Affiliation:
1. School of Aerospace Engineering, Beijing Institute of Technology , 5 South Zhongguancun Street, Beijing 100081 , China
Abstract
ABSTRACT
In the Solar system, there exist many non-gravitational perturbations for co-orbital objects, such as the solar radiation pressure, Yarkovsky effect, and so forth. Their effects play important roles in the dynamics of co-orbital objects as they lead to long-term perturbations accumulating. The motivation of this paper is to investigate the general mechanism of the non-gravitational force on the co-orbital motion in the circular restricted three-body problem. We propose an effective method for perturbed co-orbital motions by analysing the locus of the co-orbital objects in a two-dimensional map. Several expressions derived uncover how the non-gravitational force acts on orbital parameters. Taking the Sun–Jupiter system as an example, we implement numerical computations to demonstrate the validity of our results. Numerical computation shows that most of loci of co-orbital motions are in agreement with our conclusions. Some interesting phenomena of perturbed co-orbital motion, such as the co-orbital transition and escape, are found and explained. The results obtained from this paper provide an efficient approach to analyse the evolution of perturbed co-orbital motions.
Funder
National Natural Science Foundation of China
Beijing Institute of Technology Research Fund Program for Young Scholars
Publisher
Oxford University Press (OUP)