The spatial distribution deviation and the power suppression of baryons from dark matter

Author:

Yang Hua-Yu1,Wang Yun1,He Ping12ORCID,Zhu Weishan3,Feng Long-Long34

Affiliation:

1. College of Physics, Jilin University, Changchun 130012, P.R. China

2. Center for High Energy Physics, Peking University, Beijing 100871, P.R. China

3. School of Physics and Astronomy, Sun Yat-Sen University, Guangzhou 510275, P.R. China

4. Purple Mountain Observatory, CAS, Nanjing 210008, P.R. China

Abstract

ABSTRACT The spatial distribution between dark matter and baryonic matter of the Universe is biased or deviates from each other. In this work, by comparing the results derived from IllustrisTNG and WIGEON simulations, we find that many results obtained from TNG are similar to those from WIGEON data, but differences between the two simulations do exist. For the ratio of density power spectrum between dark matter and baryonic matter, as scales become smaller and smaller, the power spectra for baryons are increasingly suppressed for WIGEON simulations; while for TNG simulations, the suppression stops at $k=15-20\, {h {\rm Mpc}^{-1}}$, and the power spectrum ratios increase when $k\gt 20\, {h {\rm Mpc}^{-1}}$. The suppression of power ratio for WIGEON is also redshift-dependent. From z = 1 to z = 0, the power ratio decreases from about 70 per cent to less than 50 per cent at $k=8\, {h {\rm Mpc}^{-1}}$. For TNG simulation, the suppression of power ratio is enhanced with decreasing redshifts in the scale range $k\gt 4\, {h {\rm Mpc}^{-1}}$, but is nearly unchanged with redshifts in $k\lt 4\, {h {\rm Mpc}^{-1}}$. These results indicate that turbulent heating can also have the consequence to suppress the power ratio between baryons and dark matter. Regarding the power suppression for TNG simulations as the norm, the power suppression by turbulence for WIGEON simulations is roughly estimated to be 45 per cent at $k=2\, {h {\rm Mpc}^{-1}}$, and gradually increases to 69 per cent at $k=8\, {h {\rm Mpc}^{-1}}$, indicating the impact of turbulence on the cosmic baryons are more significant on small scales.

Funder

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3