Fast emulation of two-point angular statistics for photometric galaxy surveys

Author:

Bonici Marco1ORCID,Biggio Luca2,Carbone Carmelita1ORCID,Guzzo Luigi345

Affiliation:

1. INAF – IASF Milano , Via Alfonso Corti 12, I-20133 Milano , Italy

2. Data Analytics Lab, Institute of Machine Learning, Department of Computer Science , Universitätstrasse 6, 8006 Zürich , Switzerland

3. Dipartimento di Fisica ‘Aldo Pontremoli’, Università degli Studi di Milano , Sez. di Milano, Via Celoria 16, I-20133 Milano , Italy

4. INFN , Sez. di Milano, Via Celoria 16, I-20133 Milano , Italy

5. INAF, Osservatorio Astronomico di Brera , Via Brera, 28, I-20121 Milano , Italy

Abstract

ABSTRACT We develop a set of machine-learning-based cosmological emulators, to obtain fast model predictions for the C(ℓ) angular power spectrum coefficients, characterizing tomographic observations of galaxy clustering and weak gravitational lensing from multiband photometric surveys (and their cross-correlation). A set of neural networks are trained to map cosmological parameters into the coefficients, achieving, with respect to standard Boltzmann solvers, a speed-up of $\mathcal {O}(10^3)$ in computing the required statistics for a given set of cosmological parameters, with an accuracy better than 0.175  per cent (<0.1  per cent for the weak lensing case). This corresponds to $\lesssim 2~{{\ \rm per\ cent}}$ of the statistical error bars expected from a typical Stage IV photometric surveys. Such overall improvement in speed and accuracy is obtained through (i) a specific pre-processing optimization, ahead of the training phase, and (ii) an effective neural network architecture. Compared to previous implementations in the literature, we achieve an improvement of a factor of 5 in terms of accuracy, while training a considerably lower amount of neural networks. This results in a cheaper training procedure and a higher computational performance. Finally, we show that our emulators can recover unbiased posteriors when analysing synthetic Stage-IV galaxy survey data sets.

Funder

ASI

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dark scattering: accelerated constraints from KiDS-1000 with ReACT and CosmoPower;Monthly Notices of the Royal Astronomical Society;2024-07-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3