Modification of the radioactive heat budget of Earth-like exoplanets by the loss of primordial atmospheres

Author:

Erkaev N V123,Scherf M456,Herbort O478910,Lammer H4,Odert P6,Kubyshkina D4ORCID,Leitzinger M6,Woitke P4,O’Neill C11

Affiliation:

1. Institute of Computational Modelling, Siberian Branch of the Russian Academy of Sciences , 660036 Krasnoyarsk, Russian Federation

2. The Applied Mechanics Department, Siberian Federal University , 660074 Krasnoyarsk, Russian Federation

3. Institute of Laser Physics, Siberian Branch of the Russian Academy of Sciences , 6308010 Novosibirsk, Russian Federation

4. Space Research Institute, Austrian Academy of Sciences , Schmiedlstr. 6, A-8042 Graz, Austria

5. Institute of Geodesy, Technical University Graz , A-8010 Vienna, Austria

6. Institute of Physics/IGAM, University of Graz , A-8010 Vienna, Austria

7. St Andrews Centre for Exoplanet Science, University of St. Andrews , KY16 9AJ St. Andrews, UK

8. SUPA, School of Physics and Astronomy, University of St Andrews , KY16 9AJ North Haugh, St Andrews, UK

9. School of Earth and Environmental Sciences, University of St Andrews , KY16 9AJ Irvine Building, St Andrews, UK

10. Institute for Astrophysics, University of Vienna , Türkenschanzstrasse 17, A-1180 Vienna, Austria

11. Planetary Research Centre, Department of Earth and Environmental Science, Macquarie University , Sydney 2109, Australia

Abstract

ABSTRACT The initial abundance of radioactive heat producing isotopes in the interior of terrestrial planets are important drivers of its thermal evolution and the related tectonics and possible evolution to an Earth-like habitat. The moderately volatile element K can be outgassed from a magma ocean into H2-dominated primordial atmospheres of protoplanets with assumed masses between 0.55 and 1.0MEarth at the time when the gas disc evaporated. We estimate this outgassing and let these planets grow through impacts of depleted and non-depleted material that resembles the same 40K abundance of average carbonaceous chondrites until the growing protoplanets reach 1.0MEarth. We examine different atmospheric compositions and, as a function of pressure and temperature, calculate the proportion of K by Gibbs Free Energy minimization using the ggchem code. We find that for H2-envelopes and for magma ocean surface temperatures that are ≥ 2500 K, no K condensates are thermally stable, so that outgassed 40K can populate the atmosphere to a great extent. However, due to magma ocean turnover time and the limited diffusion of 40K into the upper atmosphere, from the entire 40K in the magma ocean only a fraction may be available for escaping into space. The escape rates of the primordial atmospheres and the dragged 40K are simulated for different stellar EUV activities with a multispecies hydrodynamic upper atmosphere evolution model. Our results show that one can expect that different initial abundances of heat producing elements will result in different thermal and tectonic histories of terrestrial planets and their habitability conditions.

Funder

***

University of St Andrews

Austrian Science Fund

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3