The observable supernova rate in galaxy–galaxy lensing systems with the TESS satellite

Author:

Holwerda B W1ORCID,Knabel S1,Steele R C1,Strolger L2,Kielkopf J1,Jacques A1,Roemer W1

Affiliation:

1. Department of Physics and Astronomy, University of Louisville, 102 Natural Science Building, Louisville, KY 40292, USA

2. Space Telescope Science Institute, 3700 San Martin Dr, Baltimore, MD 21218, USA

Abstract

ABSTRACT The Transiting Exoplanet Survey Satellite (TESS) is the latest observational effort to find exoplanets and map bright transient optical phenomena. Supernovae (SNe) are particularly interesting as cosmological standard candles for cosmological distance measures. The limiting magnitude of TESS strongly constrains SN detection to the very nearby Universe (m ∼ 19, z < 0.05). We explore the possibility that more distant SNe that are gravitationally lensed and magnified by a foreground galaxy can be detected by TESS, an opportunity to measure the time delay between light paths and constrain the Hubble constant independently. We estimate the rate of occurrence of such systems, assuming reasonable distributions of magnification, host dust attenuation, and redshift. There are approximately 16 Type Ia SNe (SNIa) and 43 core-collapse SNe (SNcc) expected to be observable with TESS each year, which translates to 18 and 43 per cent chance of detection per year, respectively. Monitoring the largest collections of known strong galaxy–galaxy lenses from Petrillo et al., this translates into 0.6 and 1.3 per cent chances of an SNIa and an SNcc per year. The TESS all-sky detection rates are lower than those of the Zwicky Transient Facility and Vera Rubin Observatory. However, on the ecliptic poles, TESS performs almost as well as its all-sky search, thanks to its continuous coverage: 2 and 4 per cent chance of an observed SN (Ia or cc) each year. These rates argue for timely processing of full-frame TESS imaging to facilitate follow-up and should motivate further searches for low-redshift lensing system.

Funder

NASA

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3