The tidal parameters of TRAPPIST-1b and c

Author:

Brasser R1,Barr A C2,Dobos V345

Affiliation:

1. Earth Life Science Institute, Tokyo Institute of Technology, Meguro, Tokyo 152-8551, Japan

2. Planetary Science Institute, 1700 East Fort Lowell, Suite 106, Tucson, AZ 85719, USA

3. Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, Konkoly Thege Miklós út 15-17, H-1121 Budapest, Hungary

4. Geodetic and Geophysical Institute, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, Csatkai Endre u. 6-8, H-9400 Sopron, Hungary

5. MTA-ELTE Exoplanet Research Group, Szent Imre h. u. 112, H-9700 Szombathely, Hungary

Abstract

Abstract The TRAPPIST-1 planetary system consists of seven planets within 0.05 au of each other, five of which are in a multiresonant chain. These resonances suggest the system formed via planet migration; subsequent tidal evolution has damped away most of the initial eccentricities. We used dynamical N-body simulations to estimate how long it takes for the multiresonant configuration that arises during planet formation to break. From there we use secular theory to pose limits on the tidal parameters of planets b and c. We calibrate our results against multilayered interior models constructed to fit the masses and radii of the planets, from which the tidal parameters are computed independently. The dynamical simulations show that the planets typically go unstable 30 Myr after their formation. Assuming synchronous rotation throughout, we compute $\frac{k_2}{Q} \gtrsim 2\times 10^{-4}$ for planet b and $\frac{k_2}{Q} \gtrsim 10^{-3}$ for planet c. Interior models yield (0.075–0.37) × 10−4 for TRAPPIST-1b and (0.4–2) × 10−4 for TRAPPIST-1c. The agreement between the dynamical and interior models is not too strong, but is still useful to constrain the dynamical history of the system. We suggest that this two-pronged approach could be of further use in other multiresonant systems if the planet’s orbital and interior parameters are sufficiently well known.

Funder

Japan Society for the Promotion of Science

Hungarian National Research, Development, and Innovation Office

National Aeronautics and Space Administration

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spin Dynamics of Planets in Resonant Chains;The Astrophysical Journal;2024-01-26

2. Libration- and Precession-driven Dissipation in the Fluid Cores of the TRAPPIST-1 Planets;The Planetary Science Journal;2023-09-01

3. TOI-332 b: a super dense Neptune found deep within the Neptunian desert;Monthly Notices of the Royal Astronomical Society;2023-08-31

4. Io as an Analog for Tidally Heated Exoplanets;Io: A New View of Jupiter’s Moon;2023

5. Long-term tidal evolution of the TRAPPIST-1 system;Monthly Notices of the Royal Astronomical Society;2022-07-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3