Automatic detection of low surface brightness galaxies from Sloan Digital Sky Survey images

Author:

Yi Zhenping1,Li Jia1,Du Wei2,Liu Meng1,Liang Zengxu1,Xing Yongguang1,Pan Jingchang1,Bu Yude3,Kong Xiaoming1,Wu Hong2

Affiliation:

1. School of Mechanical, Electrical and Information Engineering, Shandong University , 180 Wenhua Xilu, Weihai, 264200, China

2. Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences , 20A Datun Road, Chaoyang District, 100101, China

3. School of Mathematics and Statistics, Shandong University , 180 Wenhua Xilu, Weihai, 264200, China

Abstract

ABSTRACT Low surface brightness (LSB) galaxies are galaxies with central surface brightness fainter than the night sky. Due to the faint nature of LSB galaxies and the comparable sky background, it is difficult to search LSB galaxies automatically and efficiently from large sky survey. In this study, we established the low surface brightness galaxies autodetect (LSBG-AD) model, which is a data-driven model for end-to-end detection of LSB galaxies from Sloan Digital Sky Survey (SDSS) images. Object-detection techniques based on deep learning are applied to the SDSS field images to identify LSB galaxies and estimate their coordinates at the same time. Applying LSBG-AD to 1120 SDSS images, we detected 1197 LSB galaxy candidates, of which 1081 samples are already known and 116 samples are newly found candidates. The B-band central surface brightness of the candidates searched by the model ranges from 22 to 24 mag arcsec−2, quite consistent with the surface brightness distribution of the standard sample. A total of 96.46 per cent of LSB galaxy candidates have an axial ratio (b/a) greater than 0.3, and 92.04 per cent of them have $fracDev\_r$ < 0.4, which is also consistent with the standard sample. The results show that the LSBG-AD model learns the features of LSB galaxies of the training samples well, and can be used to search LSB galaxies without using photometric parameters. Next, this method will be used to develop efficient algorithms to detect LSB galaxies from massive images of the next-generation observatories.

Funder

National Natural Science Foundation of China

CAMS

CAS

Youth Innovation Promotion Association, Chinese Academy of Sciences

Alfred P. Sloan Foundation

National Science Foundation

U.S. Department of Energy

NASA

Max Planck Society

Higher Education Funding Council for England

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3