Towards a complete description of spectra and polarization of black hole accretion discs: albedo profiles and returning radiation

Author:

Taverna R1,Zhang W2ORCID,Dovčiak M2,Bianchi S1ORCID,Bursa M2,Karas V2,Matt G1

Affiliation:

1. Dipartimento di Matematica e Fisica, Università Roma Tre, via della Vasca Navale 84, I-00146 Roma, Italy

2. Astronomical Institute, Academy of Sciences of the Czech Republic, Boční II 1401, CZ-14100 Prague, Czech Republic

Abstract

ABSTRACT Accretion discs around stellarmass black holes (BHs) emit radiation peaking in the soft X-rays when the source is in the thermal state. The emerging photons are polarized and, for symmetry reasons, the polarization integrated over the source is expected to be either parallel or perpendicular to the (projected) disc symmetry axis, because of electron scattering in the disc. However, due to general relativity effects photon polarization vectors will rotate with respect to their original orientation, by an amount depending on both the BH spin and the observer’s inclination. Hence, X-ray polarization measurements may provide important information about strong gravity effects around these sources. Along with the spectral and polarization properties of radiation which reaches directly the observer once emitted from the disc, in this paper we also include the contribution of returning radiation, i.e. photons that are bent by the strong BH gravity to return again on the disc, where they scatter until eventually escaping to infinity. A comparison between our results and those obtained in previous works by different authors shows an overall good agreement, despite the use of different code architectures. We finally consider the effects of absorption in the disc material by including more realistic albedo profiles for the disc surface. Our findings in this respect show that considering also the ionization state of the disc may deeply modify the behaviour of polarization observables.

Funder

Italian Space Agency

GACR

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3