Intensity and velocity oscillations in a flaring active region

Author:

Millar David C L1ORCID,Fletcher Lyndsay12ORCID,Joshi Jayant3

Affiliation:

1. School of Physics & Astronomy, University of Glasgow , Glasgow G12 8QQ , UK

2. Rosseland Centre for Solar Physics, University of Oslo , P.O.Box 1029 Blindern, NO-0315 Oslo , Norway

3. Indian Institute of Astrophysics , II Block, Koramangala, Bengaluru 560 034 , India

Abstract

ABSTRACT Chromospheric oscillations can give us insight into the physical environment in the solar atmosphere, both in quiet Sun and flaring conditions. Many authors have reported increases in the prevalence of 3-minute oscillations which are thought to be excited by events which impact the chromosphere such as flares. In this study, we utilized the Ca ii 8542 Å line to study the oscillatory behaviour of the chromosphere in an active region which underwent two B-class flares. We analysed oscillations in both intensity and velocity, and found different behaviours in both. Intensity oscillations were most prevalent over the umbrae of sunspots and magnetic pores in the active region, and the extent of the area which contained significant oscillations was found to decrease when comparing times after the flares to before. By measuring the evolution of the magnetic field, we found that this could be because the areas surrounding the umbrae were becoming more ‘penumbral’ with an increase to the magnetic field inclination. Velocity oscillations were found across the active region both before and after the flares but were observed clearly in areas which were brightened by the second flare. By comparing to EUV imaging, it was seen that strong chromospheric velocity oscillations with 3–4-minute periods occurred at the same time and location as a flare loop cooling 30 min after the second flare peak. This could be evidence of disturbances in the loop exciting a response from the chromosphere at its acoustic cut-off frequency.

Funder

Science and Technology Facilities Council

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3