On the existence of a luminosity threshold of GRB jets in massive stars

Author:

Aloy M A1ORCID,Cuesta-Martínez C1,Obergaulinger M1

Affiliation:

1. Departamento de Astronomía y Astrofísica, Universidad de Valencia, Edificio de Investigación Jeroni Munyoz, C/ Dr. Moliner, 50, E-46100 Burjassot, Valencia, Spain

Abstract

ABSTRACT Motivated by the many associations of gamma-ray bursts (GRBs) with energetic supernova (SN) explosions, we study the propagation of relativistic jets within the progenitor star in which an SN shock wave may be launched briefly before the jets start to propagate. Based on analytic considerations and verified with an extensive set of 2D axisymmetric relativistic hydrodynamic simulations, we have estimated a threshold intrinsic jet luminosity, $L_{\rm j}^{\rm thr}$, for successfully launching a jet. This threshold depends on the structure of the progenitor and, thus, it is sensitive to its mass and to its metallicity. For a prototype host of cosmological long GRBs, a low-metallicity star of 35 M⊙, it is $L_{\rm j}^{\rm thr}\simeq 1.35\times 10^{49}$ erg s−1. The observed equivalent isotropic gamma-ray luminosity, $L_{\rm \gamma ,iso,BO} \simeq 4 \epsilon _\gamma L_{\rm j} \theta _{\rm BO}^{-2}$, crucially depends on the jet opening angle after breakout, θBO, and on the efficiency for converting the intrinsic jet luminosity into γ-radiation, εγ. Highly energetic jets can produce low-luminosity events if either their opening angle after the breakout is large, which is found in our models, or if the conversion efficiency of kinetic and internal energy into radiation is low enough. Beyond this theoretical analysis, we show how the presence of an SN shock wave may reduce this luminosity threshold by means of numerical simulations. We foresee that the high-energy transients released by jets produced near the luminosity threshold will be more similar to llGRBs or X-ray flashes than to GRBs.

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nucleosynthesis in Jet-Driven and Jet-Associated Supernovae;Handbook of Nuclear Physics;2023

2. Nucleosynthesis in Jet-Driven and Jet-Associated Supernovae;Handbook of Nuclear Physics;2022-11-13

3. r-process Viable Outflows are Suppressed in Global Alpha-viscosity Models of Collapsar Disks;The Astrophysical Journal Letters;2022-08-01

4. Magnetorotational core collapse of possible gamma-ray burst progenitors – IV. A wider range of progenitors;Monthly Notices of the Royal Astronomical Society;2022-03-29

5. The large landscape of supernova, GRB, and cocoon interactions;Monthly Notices of the Royal Astronomical Society;2022-03-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3