Periodic brightening of Kepler light curves: investigating the possibility of forward scattering due to dust clouds

Author:

van Kooten M A M1ORCID,Kenworthy M1ORCID,Doelman N12

Affiliation:

1. Leiden Observatory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, the Netherlands

2. TNO, Stieltjesweg 1, 2628 CK Delft, the Netherlands

Abstract

ABSTRACT Dedicated transiting surveys, such as the Kepler space telescope, have provided the astronomy community with a rich data set resulting in many new discoveries. In this paper, we look at eight Kepler objects identified by Wheeler & Kipping with a periodic, broad increase in flux, that look distinctly different from intrinsic star variability. We consider two physical phenomena as explanations for these observed Kepler light curves; the first being the classical explanation while the second being an alternative scenario: (i) tidal interactions in a binary star system, and (ii) forward scattering from an optically thin cloud around an exoplanet. We investigate the likelihood of each model by modelling and fitting to the observed data. The binary system qualitatively does a good job of reproducing the shape of the observed light curves due to the tidal interaction of the two stars. We do, however, see a mismatch in flux right before or after the peak brightness. We find that six out of the eight systems require an F-type primary star with a K-type companion with large eccentricities. At the same time, we find that optically thin discs, modelled using a Henyey–Greenstein phase function are also able to generate these broad brightening events. Five of the eight observed objects can be described with this new hypothesis in the absence of RV observations. As the other three are not well-described by the disc model, we conclude that they are indeed heartbeat stars.

Funder

National Aeronautics and Space Administration

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Beyond Circular Eclipsers (BeyonCE) light curve modelling;Astronomy & Astrophysics;2024-06-25

2. Modeling and Orbital Parameters of Kepler Heartbeat Stars;The Astrophysical Journal Supplement Series;2023-05-31

3. Study of chemically peculiar stars – I. High-resolution spectroscopy and K2 photometry of Am stars in the region of M44;Monthly Notices of the Royal Astronomical Society;2022-01-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3