Multifrequency study of the peculiar pulsars PSR B0919+06 and PSR B1859+07

Author:

Rajwade K M1ORCID,Perera B B P2ORCID,Stappers B W1,Roy J3,Karastergiou A45,Rankin J M6

Affiliation:

1. Jodrell Bank Centre for Astrophysics, University of Manchester, Oxford Road, Manchester M13 9PL, UK

2. Arecibo Observatory, University of Central Florida, HC3 Box 53995, Arecibo PR 00612, USA

3. National Centre for Radio Astrophysics, University of Pune Campus, GaneshKhind, PO Box. 3, Pune 411007, India

4. Astrophyiscs, Denys Wilkinson Building, University of Oxford, Keble Road, Oxford OX1 3RH, UK

5. Department of Physics and Electronics, Rhodes University, PO Box 94, Grahamstown 6140, South Africa

6. Physics Department, University of Vermont, Burlington VT 05405, USA

Abstract

ABSTRACT Since their discovery more than 50 years ago, broad-band radio studies of pulsars have generated a wealth of information about the underlying physics of radio emission. In order to gain some further insights into this elusive emission mechanism, we performed a multifrequency study of two very well-known pulsars, PSR B0919+06 and PSR B1859+07. These pulsars show peculiar radio emission properties whereby the emission shifts to an earlier rotation phase before returning to the nominal emission phase in a few tens of pulsar rotations (also known as ‘swooshes’). We confirm the previous claim that the emission during the swoosh is not necessarily absent at low frequencies and the single pulses during a swoosh show varied behaviour at 220 MHz. We also confirm that in PSR B0919+06, the pulses during the swoosh show a chromatic dependence of the maximum offset from the normal emission phase with the offset following a consistent relationship with observing frequency. We also observe that the flux density spectrum of the radio profile during the swoosh is inverted compared to the normal emission. For PSR B1859+07, we have discovered a new mode of emission in the pulsar that is potentially quasi-periodic with a different periodicity than is seen in its swooshes. We invoke an emission model previously proposed in the literature and show that this simple model can explain the macroscopic observed characteristics in both pulsars. We also argue that pulsars that exhibit similar variability on short time-scales may have the same underlying emission mechanism.

Funder

European Research Council

National Science Foundation

Science and Technology Facilities Council

Department of Atomic Energy, Government of India

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3