Bayesian hierarchical inference of asteroseismic inclination angles

Author:

Kuszlewicz James S123ORCID,Chaplin William J23,North Thomas S H23,Farr Will M456,Bell Keaton J13ORCID,Davies Guy R23,Campante Tiago L78ORCID,Hekker Saskia13

Affiliation:

1. Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen, Germany

2. School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK

3. Department of Physics and Astronomy, Stellar Astrophysics Centre (SAC), Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark

4. Center for Computational Astrophysics, Flatiron Institute, 162 Fifth Avenue, New York, NY 10010, USA

5. Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800, USA

6. School of Physics and Astronomy and Birmingham Institute of Gravitational Wave Astronomy, University of Birmingham, Birmingham B15 2TT, UK

7. Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, Rua das Estrelas, P-4150-762 Porto, Portugal

8. Departamento de Física e Astronomia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, P-4169-007 Porto, Portugal

Abstract

Abstract The stellar inclination angle – the angle between the rotation axis of a star and our line of sight – provides valuable information in many different areas, from the characterization of the geometry of exoplanetary and eclipsing binary systems to the formation and evolution of those systems. We propose a method based on asteroseismology and a Bayesian hierarchical scheme for extracting the inclination angle of a single star. This hierarchical method therefore provides a means to both accurately and robustly extract inclination angles from red giant stars. We successfully apply this technique to an artificial data set with an underlying isotropic inclination angle distribution to verify the method. We also apply this technique to 123 red giant stars observed with Kepler. We also show the need for a selection function to account for possible population-level biases, which are not present in individual star-by-star cases, in order to extend the hierarchical method towards inferring underlying population inclination angle distributions.

Funder

European Research Council

Seventh Framework Programme

California Institute of Technology

National Aeronautics and Space Administration

Science and Technology Facilities Council

Danish National Research Foundation

Horizon 2020

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3