JWST observations of dust reservoirs in type IIP supernovae 2004et and 2017eaw

Author:

Shahbandeh Melissa12ORCID,Sarangi Arkaprabha3ORCID,Temim Tea4,Szalai Tamás56ORCID,Fox Ori D2ORCID,Tinyanont Samaporn7ORCID,Dwek Eli8,Dessart Luc9,Filippenko Alexei V10,Brink Thomas G10,Foley Ryan J7,Jencson Jacob1,Pierel Justin2,Zsíros Szanna5,Rest Armin12,Zheng WeiKang10,Andrews Jennifer11,Clayton Geoffrey C12,De Kishalay13,Engesser Michael2,Gezari Suvi2,Gomez Sebastian2,Gonzaga Shireen2,Johansson Joel14,Kasliwal Mansi15,Lau Ryan16,De Looze Ilse17,Marston Anthony18ORCID,Milisavljevic Dan1920ORCID,O’Steen Richard2ORCID,Siebert Matthew2,Skrutskie Michael21,Smith Nathan22ORCID,Strolger Lou2,Van Dyk Schuyler D23ORCID,Wang Qinan1ORCID,Williams Brian8,Williams Robert2,Xiao Lin2425,Yang Yi10ORCID

Affiliation:

1. Department of Physics and Astronomy, Johns Hopkins University , Baltimore, MD 21218, USA

2. Space Telescope Science Institute , 3700 San Martin Drive, Baltimore, MD 21218, USA

3. DARK, Niels Bohr Institute, University of Copenhagen , Jagtvej 128, 2200 Copenhagen, Denmark

4. Department of Astrophysical Sciences, Princeton University , Princeton, NJ 08544, USA

5. Department of Experimental Physics, Institute of Physics, University of Szeged , H-6720 Szeged, Dóm tér 9, Hungary

6. ELKH-SZTE Stellar Astrophysics Research Group , H-6500 Baja, Szegedi út, Kt. 766, Hungary

7. Department of Astronomy and Astrophysics, University of California , Santa Cruz, CA 95064, USA

8. Observational Cosmology Lab, NASA Goddard Space Flight Center , Code 665, Greenbelt, MD 20771, USA

9. Institut d’Astrophysique de Paris, CNRS-Sorbonne Université , 98 bis boulevard Arago, F-75014 Paris, France

10. Department of Astronomy, University of California , Berkeley, CA 94720-3411, USA

11. Gemini Observatory , 670 N. Aohoku Place, Hilo, Hawaii, HI 96720, USA

12. Department of Physics & Astronomy, Louisiana State University , Baton Rouge, LA 70803, USA

13. MIT-Kavli Institute for Astrophysics and Space Research , 77 Massachusetts Ave., Cambridge, MA 02139, USA

14. Department of Physics, The Oskar Klein Center, Stockholm University , AlbaNova, 10691 Stockholm, Sweden

15. Cahill Center for Astrophysics, California Institute of Technology , 1200 E. California Blvd. Pasadena, CA 91125, USA

16. NSF’s NOIRLab , 950 N. Cherry Avenue, Tucson, 85719, AZ, USA

17. Sterrenkundig Observatorium, Ghent University , Krijgslaan 281 - S9, 9000 Gent, Belgium

18. European Space Agency (ESA) , ESAC, E-28692 Villanueva de la Canada, Madrid, Spain

19. Purdue University, Department of Physics and Astronomy , 525 Northwestern Ave, West Lafayette, IN 4790720, USA

20. Integrative Data Science Initiative, Purdue University , West Lafayette, IN 47907, USA

21. Department of Astronomy, University of Virginia , Charlottesville, VA 22904-4325, USA

22. Steward Observatory, University of Arizona , 933 N. Cherry St, Tucson, AZ 85721, USA

23. Caltech/IPAC , Mailcode 100-22, Pasadena, CA 91125, USA

24. Department of Physics, College of Physical Sciences and Technology , Hebei University, 071002 Baoding, China

25. Key Laboratory of High-precision Computation and Application of Quantum Field Theory of Hebei Province, Hebei University , 071002 Baoding, China

Abstract

ABSTRACT Supernova (SN) explosions have been sought for decades as a possible source of dust in the Universe, providing the seeds of galaxies, stars, and planetary systems. SN 1987A offers one of the most promising examples of significant SN dust formation, but until the James Webb Space Telescope (JWST), instruments have traditionally lacked the sensitivity at both late times (>1 yr post-explosion) and longer wavelengths (i.e. >10 μm) to detect analogous dust reservoirs. Here we present JWST/MIRI observations of two historic Type IIP SNe, 2004et and SN 2017eaw, at nearly 18 and 5 yr post-explosion, respectively. We fit the spectral energy distributions as functions of dust mass and temperature, from which we are able to constrain the dust geometry, origin, and heating mechanism. We place a 90 per cent confidence lower limit on the dust masses for SNe 2004et and 2017eaw of >0.014 and >4 × 10−4 M⊙, respectively. More dust may exist at even colder temperatures or may be obscured by high optical depths. We conclude dust formation in the ejecta to be the most plausible and consistent scenario. The observed dust is radiatively heated to ∼100–150 K by ongoing shock interaction with the circumstellar medium. Regardless of the best fit or heating mechanism adopted, the inferred dust mass for SN 2004et is the second highest (next to SN 1987A) mid-infrared inferred dust mass in extragalactic SNe thus far, promoting the prospect of SNe as potential significant sources of dust in the Universe.

Funder

NASA

ESA

CSA

Space Telescope Science Institute

California Institute of Technology

University of California

Google

Hungarian Academy of Sciences

National Research, Development and Innovation Fund

Nemzeti Kutatási Fejlesztési és Innovációs Hivatal

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3