Cosmic distance determination from photometric redshift samples using BAO peaks only

Author:

Sridhar Srivatsan1ORCID,Song Yong-Seon1

Affiliation:

1. Korea Astronomy & Space Science Institute 776, Daedeokdae-ro, Yuseong-gu, Daejeon 34055, Republic of Korea

Abstract

ABSTRACT The galaxy distributions along the line of sight are significantly contaminated by the uncertainty on redshift measurements obtained through multiband photometry, which makes it difficult to get cosmic distance information measured from baryon acoustic oscillations, or growth functions probed by redshift distortions. We investigate the propagation of the uncertainties into large-scale clustering by exploiting all known estimators, and propose the wedge approach as a promising analysis tool to extract cosmic distance information still remaining in the photometric galaxy samples. We test our method using simulated galaxy maps with photometric uncertainties of σ0 = (0.01, 0.02, 0.03). The measured anisotropy correlation function ξ is binned into the radial direction of s and the angular direction of μ, and the variations of $\xi (s,\mu)\,$with perpendicular and radial cosmic distance measures of DA and H−1 are theoretically estimated by an improved RSD model. Although the radial cosmic distance H−1 is unable to be probed from any of the three photometric galaxy samples, the perpendicular component of DA is verified to be accurately measured even after the full marginalization of H−1. We measure DA with approximately 6 per cent precision which is nearly equivalent to what we can expect from spectroscopic DR12 CMASS galaxy samples.

Funder

Korea Astronomy and Space Science Institute

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3