The nature of the soft excess and spectral variability in the Seyfert 1 galaxy Zw 229.015

Author:

Tripathi S1,Waddell S G H1,Gallo L C1,Welsh W F2,Chiang C-Y3ORCID

Affiliation:

1. Department of Astronomy and Physics, Saint Mary’s University, Halifax, B3H 3C3,Canada

2. Department of Astronomy, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA

3. Department of Physics and Astronomy, Wayne State University, Detroit, MI 48201, USA

Abstract

ABSTRACT We have carried out a systematic analysis of the nearby (z = 0.0279) active galaxy Zw 229.015 using multi-epoch, multi-instrument, and deep pointed observations with XMM–Newton, Suzaku, Swift,and NuSTAR. Spectral and temporal variability are examined in detail on both the long (weeks-to-years) and short (hours) time-scales. A deep Suzaku observation of the source shows two distinct spectral states; a bright-soft state and a dim-hard state in which changes in the power-law component account for the differences. Partial covering, blurred reflection, and soft Comptonization models describe the X-ray spectra comparably well, but the smooth, rather featureless, spectrum may be favouring the soft Comptonization scenario. Moreover, independent of the spectral model, the observed spectral variability is ascribed to the changes in the power-law continuum only and do not require changes in the properties of the absorber or blurred reflector incorporated in the other scenarios. The multi-epoch observations between 2009 and 2018 can be described in similar fashion. This could be understood if the primary emission is originating at a large distance from a standard accretion disc or if the disc is optically thin and geometrically thick as recently proposed for Zw 229.015. Our investigation shows that Zw 229.015 behaves similar to sources like Akn 120 and Mrk 530 that exhibit a strong soft excess, but weak Compton hump and Fe Kα emission.

Funder

Jet Propulsion Laboratory

California Institute of Technology

National Aeronautics and Space Administration

University of Leicester

Natural Sciences and Engineering Research Council of Canada

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3