Simulations of weakly magnetized turbulent mixing layers

Author:

Zhao Xihui1ORCID,Bai Xue-Ning12ORCID

Affiliation:

1. Institute for Advanced Study, Tsinghua University , Beijing 100084 , China

2. Department of Astronomy, Tsinghua University , Beijing 100084 , China

Abstract

ABSTRACT Radiative turbulent mixing layers (TMLs) are expected to form pervasively at the phase boundaries in multiphase astrophysical systems. This inherently small-scale structure is dynamically crucial because it directly regulates the mass, momentum, and energy exchanges between adjacent phases. Previous studies on hydrodynamic TMLs have revealed the interactions between cold and hot phases in the context of the circumgalactic medium, offering important insight into the fate of cold clouds traveling through hot galactic winds. However, the role of magnetic field has only been sparsely investigated. We perform a series of 3D magnetohydrodynamics simulations of such mixing layers in the presence of weak to modest background magnetic field. We find that due to field amplification, even relatively weak background magnetic fields can significantly reduce the surface brightness and inflow velocity of the hot gas in the mixing layer. This reduction is attributed to a combination of magnetic pressure support and direct suppression of turbulent mixing, both of which alter the phase structures. Our results are largely independent of thermal conduction and converged with resolution, offering insights on the survival of cold gas in multiphase systems.

Funder

NSFC

Tsinghua University

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Geometry, Dissipation, Cooling, and the Dynamical Evolution of Wind-blown Bubbles;The Astrophysical Journal;2024-07-01

2. The survival and entrainment of molecules and dust in galactic winds;Monthly Notices of the Royal Astronomical Society;2024-04-27

3. Magnetic fields in multiphase turbulence: impact on dynamics and structure;Monthly Notices of the Royal Astronomical Society;2023-10-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3