Role of magnetic pressure forces in fluctuation dynamo saturation

Author:

Sur Sharanya1,Subramanian Kandaswamy23ORCID

Affiliation:

1. Indian Institute of Astrophysics , 2nd Block, 100 Feet Road, Koramangala, Bangalore 560034 , India

2. IUCAA , Post Bag 4, Ganeshkhind, Pune 411007 , India

3. Department of Physics, Ashoka University, Rajiv Gandhi Education City , Rai, Sonipat 131029, Haryana , India

Abstract

ABSTRACT Using magnetohydrodynamic simulations of fluctuation dynamos in turbulent flows with rms Mach numbers $\mathcal {M}_{\rm rms}= 0.2, 1.1$, and 3, we show that magnetic pressure forces play a crucial role in dynamo saturation in supersonic flows. First, as expected when pressure forces oppose compression, an increase in anticorrelation between density and magnetic field strengths obtains even in subsonic flows with the anticorrelation arising from the intense but rarer magnetic structures. In supersonic flows, due to stronger compressive motions density and magnetic field strength continue to maintain a positive correlation. However, the degree of positive correlation decreases as the dynamo saturates. Secondly, we find that the unit vectors of ∇ρ and ∇B2 are preferentially antiparallel to each other in subsonic flows. This is indicative of magnetic pressure opposing compression. This antiparallel alignment persists in transonic and supersonic flows at dynamo saturation. However, compressive motions also lead to the emergence of a parallel alignment in these flows. Finally, we consider the work done against the components of the Lorentz force and the different sources of magnetic energy growth and dissipation. We show that while in subsonic flows, suppression of field line stretching is dominant in saturating the dynamo, the picture is different in supersonic flows. Both field line stretching and compression initially amplifies the field. However, growing magnetic pressure opposes further compression of magnetic flux which tends to reduce the compressive motions. Simultaneously, field line stretching also reduces. But, suppression of compressive amplification dominates the saturation of the dynamo.

Funder

Science and Engineering Research Board

DST

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3