A local model for the spherical collapse/expansion problem

Author:

Lynch Elliot M1,Laibe Guillaume1

Affiliation:

1. Univ Lyon, Univ Lyon1, Ens de Lyon, CNRS, Centre de Recherche Astrophysique de Lyon UMR5574 , F-69230, Saint-Genis,-Laval , France

Abstract

ABSTRACT Spherical flows are a classic problem in astrophysics which are typically studied from a global perspective. However, much like with accretion discs, there are likely many instabilities and small scale phenomena which would be easier to study from a local perspective. For this purpose, we develop a local model for a spherically contracting/expanding gas cloud, in the spirit of the shearing box, β-plane, and expanding box models which have had extensive use in studies of accretion discs, planets, and stellar winds, respectively. The local model consists of a, spatially homogeneous, periodic box with a time varying aspect ratio, along with a scale factor (analogous to that in FRW/Newtonian cosmology) relating the box coordinates to the physical coordinates of the global problem. We derive a number of symmetries and conservation laws exhibited by the local model. Some of these reflect symmetries of the periodic box, modified by the time dependant geometry, while others are local analogues for symmetries of the global problem. The energy, density, and vorticity in the box also generically increase(/decrease) as a consequence of the collapse(/expansion). We derive a number of non-linear solutions, including a local analogue of uniform density zonal flows, which grow as a consequence of angular momentum conservation. Our model is closely related to the accelerated expanding box model of Tenerani & Velli and is an extension of the isotropic model considered by Robertson & Goldreich.

Funder

European Research Council

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3