Constraining the atmospheric elements in hot Jupiters with Ariel

Author:

Wang Fang123,Changeat Quentin34ORCID,Tinetti Giovanna3,Turrini Diego56,Wright Sam O M3

Affiliation:

1. Xi’an Institute of Optics and Precision Mechanics of CAS , 710119 Xi’an, China

2. University of Chinese Academy of Sciences , 100049 Beijing, China

3. Department of Physics and Astronomy, University College London , Gower Street, London, WC1E 6BT, UK

4. European Space Agency (ESA) , ESA Office, Space Telescope Science Institute (STScI), 3700 San Martin Drive, Baltimore, MD 21218, USA

5. INAF-Osservatorio Astrofisico di Torino , Via Osservatorio 20, I-10025 Pino Torinese (TO), Italy

6. INAF-Istituto di Astrofisica e Planetologia Spaziali , Via del Fosso del Cavaliere 100, I-00133 Rome, Italy

Abstract

ABSTRACT One of the main objectives of the European Space Agency’s Ariel telescope (launch 2029) is to understand the formation and evolution processes of a large sample of planets in our Galaxy. Important indicators of such processes in giant planets are the elemental compositions of their atmospheres. Here we investigate the capability of Ariel to constrain four key atmospheric markers: metallicity, C/O, S/O, and N/O, for three well-known, representative hot-Jupiter atmospheres observed with transit spectroscopy, i.e. HD 209458b, HD 189733b, and WASP-121b. We have performed retrieval simulations for these targets to verify how the planetary formation markers listed above would be recovered by Ariel when observed as part of the Ariel Tier 3 survey. We have considered eight simplified different atmospheric scenarios with a cloud-free isothermal atmosphere. Additionally, extra cases were tested to illustrate the effect of C/O and metallicity in recovering the N/O. From our retrieval results, we conclude that Ariel is able to recover the majority of planetary formation markers. The contributions from CO and CO2 are dominant for the C/O in the solar scenario. In a C-rich case, C2H2, HCN, and CH4 may provide additional spectral signatures that can be captured by Ariel. In our simulations, H2S is the main tracer for the S/O in hot-Jupiter atmospheres. In the super-solar metallicity cases and the cases with C/O > 1, the increased abundance of HCN is easily detectable and the main contributor to N/O, while other N-bearing species contribute little to the N/O in the investigated atmospheres.

Funder

INAF

ASI

European Research Council

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Astrobiology: life detection and the abiotic baseline;Astronomy & Geophysics;2024-02-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3