Black hole discs and spheres in galactic nuclei – exploring the landscape of vector resonant relaxation equilibria

Author:

Máthé Gergely1ORCID,Szölgyén Ákos1,Kocsis Bence12ORCID

Affiliation:

1. Institute of Physics, Eötvös University , Pázmány P. s. 1/A , Budapest 1117, Hungary

2. Rudolf Peierls Centre for Theoretical Physics, University of Oxford , Parks Road , Oxford OX1 3PU, United Kingdom

Abstract

ABSTRACT Vector resonant relaxation (VRR) is known to be the fastest gravitational process that shapes the geometry of stellar orbits in nuclear star clusters. This leads to the realignment of the orbital planes on the corresponding VRR time-scale tVRR of a few million years, while the eccentricity e and semimajor axis a of the individual orbits are approximately conserved. The distribution of orbital inclinations reaches an internal equilibrium characterized by two conserved quantities, the total potential energy among stellar orbits, Etot, and the total angular momentum, Ltot. On time-scales longer than tVRR, the eccentricities and semimajor axes change slowly, and the distribution of orbital inclinations are expected to evolve through a series of VRR equilibria. Using a Monte Carlo Markov Chain method, we determine the equilibrium distribution of orbital inclinations in the microcanonical ensemble with fixed Etot and Ltot for isolated nuclear star clusters with a power-law distribution of a, e, and m, where m is the stellar mass. We explore the possible equilibria for nine representative Etot–Ltot pairs that cover the possible parameter space. For all cases, the equilibria show anisotropic mass segregation, where the distribution of more massive objects is more flattened than that for lighter objects. Given that stellar black holes are more massive than the average main-sequence stars, these findings suggest that black holes reside in disc-like structures within nuclear star clusters for a wide range of initial conditions.

Funder

European Research Council

Hungarian National Research, Development, and Innovation Office

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Anisotropic mass segregation: Two-component mean-field model;Physical Review D;2023-11-03

2. Constraining intermediate-mass black holes from the stellar disc of SgrA*;Monthly Notices of the Royal Astronomical Society;2023-09-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3