Paving the way forEuclid and JWST via probabilistic selection of high-redshift quasars

Author:

Nanni Riccardo12ORCID,Hennawi Joseph F12ORCID,Wang Feige3,Yang Jinyi3,Schindler Jan-Torge14,Fan Xiaohui3

Affiliation:

1. Leiden Observatory, Leiden University , PO Box 9513, NL-2300 RA Leiden, the Netherlands

2. Department of Physics, University of California , Santa Barbara, CA 93106-9530, USA

3. Steward Observatory, University of Arizona , 933 North Cherry Avenue, Tucson, AZ 85721, USA

4. Max Planck Institut für Astronomie , Königstuhl 17, D-69117 Heidelberg, Germany

Abstract

ABSTRACT We introduce a probabilistic approach to select 6 ≤ $z$ ≤ 8 quasar candidates for spectroscopic follow-up, which is based on density estimation in the high-dimensional space inhabited by the optical and near-infrared photometry. Densities are modelled as Gaussian mixtures with principled accounting of errors using the extreme deconvolution (XD) technique, generalizing an approach successfully used to select lower redshift ($z$ ≤ 3) quasars. We train the probability density of contaminants on 1902 071 7-d flux measurements from the 1076 deg2 overlapping area from the Dark Energy Camera Legacy Survey (DECaLS) ($z$), VIKING (YJHKs), and unWISE (W1W2) imaging surveys, after requiring they dropout of DECaLS g and r, whereas the distribution of high-$z$ quasars are trained on synthetic model photometry. Extensive simulations based on these density distributions and current estimates of the quasar luminosity function indicate that this method achieves a completeness of $\ge 56{{\ \rm per\ cent}}$ and an efficiency of $\ge 5{{\ \rm per\ cent}}$ for selecting quasars at 6 < $z$ < 8 with JAB < 21.5. Among the classified sources are 8 known 6 < $z$ < 7 quasars, of which 2/8 are selected suggesting a completeness $\simeq 25{{\ \rm per\ cent}}$, whereas classifying the 6 known (JAB < 21.5) quasars at $z$ > 7 from the entire sky, we select 5/6 or a completeness of $\simeq 80{{\ \rm per\ cent}}$. The failure to select the majority of 6 < $z$ < 7 quasars arises because our quasar density model is based on an empirical quasar spectral energy distribution model that underestimates the scatter in the distribution of fluxes. This new approach to quasar selection paves the way for efficient spectroscopic follow-up of Euclid quasar candidates with ground-based telescopes and James Webb Space Telescope.

Funder

European Research Council

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quasar Island – three new z ∼ 6 quasars, including a lensed candidate, identified with contrastive learning;Monthly Notices of the Royal Astronomical Society;2024-03-28

2. High-z quasar candidate archive: a spectroscopic catalogue of quasars and contaminants in various quasar searches;Monthly Notices of the Royal Astronomical Society;2024-01-10

3. Predicting the Yields of z > 6.5 Quasar Surveys in the Era of Roman and Rubin;The Astrophysical Journal;2023-10-01

4. Quasars and the Intergalactic Medium at Cosmic Dawn;Annual Review of Astronomy and Astrophysics;2023-08-18

5. Radio emission from the first quasars at z = 6–15;Monthly Notices of the Royal Astronomical Society: Letters;2023-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3