The miniJPAS survey quasar selection – II. Machine learning classification with photometric measurements and uncertainties

Author:

Rodrigues Natália V N1,Raul Abramo L1,Queiroz Carolina12,Martínez-Solaeche Ginés3ORCID,Pérez-Ràfols Ignasi45ORCID,Bonoli Silvia67,Chaves-Montero Jonás6ORCID,Pieri Matthew M8,González Delgado Rosa M3,Morrison Sean S89,Marra Valerio1011ORCID,Márquez Isabel3ORCID,Hernán-Caballero A12,Díaz-García L A3,Benítez Narciso3,Cenarro A Javier13,Dupke Renato A141516,Ederoclite Alessandro12,López-Sanjuan Carlos13,Marín-Franch Antonio13,Mendes de Oliveira Claudia17,Moles Mariano312,Sodré Laerte17ORCID,Varela Jesús13,Vázquez Ramió Héctor13,Taylor Keith18

Affiliation:

1. Departamento de Física Matemática, Instituto de Física, Universidade de São Paulo , Rua do Matão 1371, CEP 05508-090, São Paulo, Brazil

2. Departamento de Astronomia, Instituto de Física, Universidade Federal do Rio Grande do Sul (UFRGS) , Avenida Bento Gonçalves 9500, Porto Alegre, RS, Brazil

3. Instituto de Astrofísica de Andalucía (CSIC) , PO Box 3004, E-18080 Granada, Spain

4. Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology , E-08193 Bellaterra (Barcelona), Spain

5. Laboratoire de Physique Nucléaire et de Hautes Energies, Sorbonne Université, Université Paris Diderot , CNRS/IN2P3, LPNHE, 4 Place Jussieu, F-75252 Paris, France

6. Donostia International Physics Center , Paseo Manuel de Lardizabal 4, E-20018 Donostia-San Sebastian, Spain

7. Ikerbasque, Basque Foundation for Science , E-48013 Bilbao, Spain

8. Aix-Marseille University, CNRS, CNES, LAM , Marseille, France

9. Department of Astronomy, University of Illinois at Urbana–Champaign , Urbana, IL 61801, USA

10. INAF, Osservatorio Astronomico di Trieste , via Tiepolo 11, I-34131 Trieste, Italy

11. IFPU, Institute for Fundamental Physics of the Universe , via Beirut 2, I-34151 Trieste, Italy

12. Centro de Estudios de Física del Cosmos de Aragón (CEFCA) , Plaza San Juan, 1, E-44001 Teruel, Spain

13. Centro de Estudios de Física del Cosmos de Aragón (CEFCA), Unidad Asociada al CSIC , Plaza San Juan 1, E-44001 Teruel, Spain

14. Observatório Nacional/MCTI, Rua General José Cristino , 77, São Cristóvão, CEP 20921-400, Rio de Janeiro, Brazil

15. Department of Astronomy, University of Michigan , 311 West Hall, 1085 South University Avenue, Ann Arbor, MI, USA

16. Department of Physics and Astronomy, University of Alabama , Gallalee Hall, Tuscaloosa, AL 35401, USA

17. Depto. de Astronomia, Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo , Rua do Matão, 1226, CEP 05508-090, São Paulo, Brazil

18. Instruments4 , 4121 Pembury Place, La Canada Flintridge, CA 91011, USA

Abstract

ABSTRACTAstrophysical surveys rely heavily on the classification of sources as stars, galaxies, or quasars from multiband photometry. Surveys in narrow-band filters allow for greater discriminatory power, but the variety of different types and redshifts of the objects present a challenge to standard template-based methods. In this work, which is part of a larger effort that aims at building a catalogue of quasars from the miniJPAS survey, we present a machine learning-based method that employs convolutional neural networks (CNNs) to classify point-like sources including the information in the measurement errors. We validate our methods using data from the miniJPAS survey, a proof-of-concept project of the Javalambre Physics of the Accelerating Universe Astrophysical Survey (J-PAS) collaboration covering ∼1 deg2 of the northern sky using the 56 narrow-band filters of the J-PAS survey. Due to the scarcity of real data, we trained our algorithms using mocks that were purpose-built to reproduce the distributions of different types of objects that we expect to find in the miniJPAS survey, as well as the properties of the real observations in terms of signal and noise. We compare the performance of the CNNs with other well-established machine learning classification methods based on decision trees, finding that the CNNs improve the classification when the measurement errors are provided as inputs. The predicted distribution of objects in miniJPAS is consistent with the putative luminosity functions of stars, quasars, and unresolved galaxies. Our results are a proof of concept for the idea that the J-PAS survey will be able to detect unprecedented numbers of quasars with high confidence.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Fundação de Amparo à Pesquisa do Estado de São Paulo

Horizon 2020

French National Research Agency

MCIU

Ministerio de Ciencia e Innovación

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3