Weighing the stellar constituents of the galactic halo with APOGEE red giant stars

Author:

Mackereth J Ted1ORCID,Bovy Jo2ORCID

Affiliation:

1. School of Astronomy and Astrophysics, University of Birmingham, Edgbaston, Birmimgham B15 2TT, UK

2. Department of Astronomy and Astrophysics, University of Toronto, 50 St George Street, Toronto, ON M5S 3H4, Canada

Abstract

ABSTRACT The stellar mass in the halo of the Milky Way is notoriously difficult to determine, owing to the paucity of its stars in the solar neighbourhood. With tentative evidence from Gaia that the nearby stellar halo is dominated by a massive accretion event – referred to as Gaia-Enceladus or Sausage – these constraints are now increasingly urgent. We measure the mass in kinematically selected mono-abundance populations (MAPs) of the stellar halo between −3 < [Fe/H] < −1 and 0.0 < [Mg/Fe] < 0.4 using red giant star counts from APOGEE DR14. We find that MAPs are well fit by single power laws on triaxial ellipsoidal surfaces, and we show that that the power-law slope α changes such that high [Mg/Fe] populations have α ∼ 4, whereas low [Mg/Fe] MAPs are more extended with shallow slopes, α ∼ 2. We estimate the total stellar mass to be $M_{*,\mathrm{tot}} = 1.3^{+0.3}_{-0.2}\times 10^{9}\ \mathrm{M_{\odot}}$, of which we estimate ${\sim}0.9^{+0.2}_{-0.1} \times 10^{9}\ \mathrm{M_{\odot}}$ to be accreted. We estimate that the mass of accreted stars with e > 0.7 is M*,accreted, e > 0.7 = 3 ± 1 (stat.) ± 1 (syst.) × 108 M⊙, or ${\sim}30{-}50{{\ \rm per\ cent}}$ of the accreted halo mass. If the majority of these stars are the progeny of a massive accreted dwarf, this places an upper limit on its stellar mass, and implies a halo mass for the progenitor of ∼1010.2 ± 0.2 M⊙. This constraint not only shows that the Gaia-Enceladus/Sausage progenitor may not be as massive as originally suggested, but that the majority of the Milky Way stellar halo was accreted. These measurements are an important step towards fully reconstructing the assembly history of the Milky Way.

Funder

ERC

Natural Sciences and Engineering Research Council of Canada

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3