Automatic disturbance identification for linear quadratic Gaussian control in adaptive optics

Author:

Wang Jiaying123ORCID,Guo Youming12,Kong Lin12,Zhang Lanqiang12,Gu Naiting12,Chen Kele123,Rao Changhui12

Affiliation:

1. Key Laboratory on Adaptive Optics, Chinese Academy of Sciences, PO Box 350, Shuangliu, Chengdu 610209, Sichuan, China

2. Laboratory on Adaptive Optics, Institute of Optics and Electronics, Chinese Academy of Sciences, Shuangliu, Chengdu 610209, Sichuan, China

3. University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China

Abstract

ABSTRACT Linear quadratic Gaussian (LQG) control is an appealing control strategy to mitigate disturbances in adaptive optics (AO) systems. The key of this method is to quickly and consecutively build an accurate dynamical model to track time-varying disturbances such as turbulence, wind load and vibrations. In order to address this problem, we propose an automatic identification method consisting mainly of an improved spectrum separation procedure and a parameter optimization process based on the particle swarm optimization (PSO) algorithm. The improved spectrum separation can pick out perturbation peaks more accurately, especially when some peaks are very close together. Moreover, compared with the Levenberg–Marquardt method and the maximum-likelihood technique based on grids, the PSO algorithm has a faster convergence speed and lower computational burden, and thus is easier to implement. The entire identification process can run automatically online without human intervention. This identification method is verified with a synthetic disturbance profile in a simulation. Furthermore, the performance of the method is evaluated with consecutive measurement data recorded by the 1-m New Vacuum Solar Telescope at the Fuxian Solar Observatory.

Funder

National Natural Science Foundation of China

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Chinese Academy of Sciences

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3