Optimized temporal binning of comparison star measurements for differential photometry

Author:

Hartley Kathryn E1ORCID,Wilson R W1ORCID

Affiliation:

1. Centre for Advanced Instrumentation, Department of Physics, University of Durham , South Road, Durham DH1 3LE , UK

Abstract

ABSTRACT Ground-based, high precision observations of the light curves of objects such as transiting exoplanets rely on the application of differential photometry. The flux of the target object is measured relative to a comparison star in the same field, allowing correction for systematic trends in the light curve, mainly due to atmospheric effects including the variation of extinction with airmass. However, the precision of the light curve is then limited by the random noise for the measurements of both the target object and the comparison star. For time-resolved photometry using short exposure times of up to a few tens of seconds, the time-scale of the systematic variations due to atmospheric (or other) effects can be much longer than the cadence of the observations. In this case, the overall signal-to-noise ratio of the observation may be improved significantly by applying some temporal binning to the measurements of the comparison star, before comparison with the target object, without reducing the cadence of the overall light curve. In this paper, we will describe a data reduction pipeline for implementing this method which optimizes the number of frames to be binned for the comparison star, and we present example results for time-resolved photometric data. An example of applying the technique on an exoplanet transit light curve of WASP-166b is presented using four comparison stars of different magnitudes.

Funder

Science and Technology Facilities Council

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3