Optical and NIR spectroscopy of cool CEMP stars to probe the nucleosynthesis in low-mass AGB binary system

Author:

Susmitha A1ORCID,Ojha D K1,Sivarani T2,Ninan J P3,Bandyopadhyay A4ORCID,Surya Arun5,Unni Athira2

Affiliation:

1. Tata Institute of Fundamental Research, Colaba, Mumbai 400005, Maharashtra, India

2. Indian Institute of Astrophysics, Koramangala II block, Bengaluru 560034, Karnataka, India

3. Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Lab, University Park, PA 16802, USA

4. Aryabhatta Research Institute of Observational Sciences, Manora Peak, Nainital 263001, Uttarakhand, India

5. Center for Astrophysics And Space Sciences, University of California, San Diego, CA 92093, USA

Abstract

ABSTRACT We present the abundance analyses of seven carbon enhanced metal-poor (CEMP) stars to understand the origin of carbon in them. We used high-resolution optical spectra to derive abundances of various elements. We also used low-resolution near-infrared (NIR) spectra to derive the abundance of O and 12C/13C from the CO molecular band and compared their values with those derived from high-resolution optical spectra. We identified a good agreement between the values. Thus, in cool CEMP stars, the NIR observations complement the high-resolution optical observations to derive the oxygen abundance and the 12C/13C ratio. This enables us to probe fainter cool CEMP stars using NIR spectroscopy. C, N, O abundances of all the program stars in this study show abundances that are consistent with binary mass transfer from a low-mass, low-metallicity asymptotic giant branch (AGB) companion which is further supported by the presence of enhancement in neutron-capture elements and detection of radial velocity variation. One of the stars shows abundance patterns similar to a CEMP-s star whereas the abundance pattern of the rest of the stars satisfy the criteria required to classify them as CEMP-r/s stars. The subclassification of some of the stars studied here is revisited. The abundance of neutron-capture elements in these CEMP-r/s stars resembles to that of i-process models where proton ingestion episodes in the companion low-mass, low-metallicity AGB stars produce the necessary neutron density required for the onset of i-process.

Funder

CREST

Department of Atomic Energy, Government of India

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3