Common envelope evolution of eccentric binaries

Author:

Glanz Hila1ORCID,Perets Hagai B1ORCID

Affiliation:

1. Technion - Israel Institute of Technology, Haifa, 3200002, Israel

Abstract

ABSTRACT Common envelope evolution (CEE) is believed to be an important stage in the evolution of binary/multiple stellar systems. Following this stage, the CE is thought to be ejected, leaving behind a compact binary (or a merger product). Although extensively studied, the CEE process is still little understood, and although most binaries have non-negligible eccentricity, the effect of initial eccentricity on the CEE has been little explored. Moreover, most studies assume a complete circularization of the orbit by the CE onset, while observationally such eccentricities are detected in many post-CE binaries. Here we use smoothed particle hydro-dynamical simulations to study the evolution of initially eccentric (0 ≤ e ≤ 0.95) CE-systems. We find that initially eccentric binaries only partially circularize. In addition, higher initial eccentricity leads to a higher eccentricity following the end of the inspiral phase, with eccentricities as high as 0.18 in the most eccentric cases, and even higher if the initial pericentre of the orbit is located inside the star (e.g. following a kick into an eccentric orbit, rather than a smooth transition). CEE of more eccentric binaries leads to enhanced dynamical mass-loss of the CE compared with more circular binaries, and depends on the initial closest approach of the binary. We show that our results and the observed eccentricities of post-CE binaries suggest that the typical assumptions of circular orbits following CEE might potentially be revised. We expect post-CE eccentricities to affect the delay time distributions of various transients such as supernovae, gamma-ray bursts, and gravitational-wave sources by up to tens of per cents.

Funder

European Union

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Wide Post-common Envelope Binaries from Gaia: Orbit Validation and Formation Models;Publications of the Astronomical Society of the Pacific;2024-08-01

2. Driving asymmetric red supergiant winds with binary interactions;Monthly Notices of the Royal Astronomical Society;2024-05-31

3. Wide post-common envelope binaries containing ultramassive white dwarfs: evidence for efficient envelope ejection in massive asymptotic giant branch stars;Monthly Notices of the Royal Astronomical Society;2023-12-23

4. Stellar triples with chemically homogeneously evolving inner binaries;Monthly Notices of the Royal Astronomical Society;2023-12-11

5. NGC 6302: The Tempestuous Life of a Butterfly;The Astrophysical Journal;2023-10-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3