The physical and the geometrical properties of simulated cold H i structures

Author:

Gazol Adriana1,Villagran Marco A2ORCID

Affiliation:

1. Instituto de Radioastronomía y Astrofísica, UNAM, Campus Morelia, PO Box 3-72, 58090 Morelia, Michoacán, México

2. Instituto de Astronomía y Física del Espacio, UBA-CONICET, Ciudad Universitaria, C1428ZAA Buenos Aires, Argentina

Abstract

ABSTRACT The objective of this paper is to help shedding some light on the nature and the properties of the cold structures formed via thermal instability in the magnetized atomic interstellar medium. To this end, we searched for clumps formed in forced (magneto)hydrodynamic simulations with an initial magnetic field ranging from 0 to 8.3 μG. We statistically analysed, through the use of Kernel density estimations, the physical and the morphological properties of a sample containing ∼1500 clumps, as well as the relative alignments between the main direction of clumps and the internal velocity and magnetic field. The density (n ∼ 50–200 cm−3), the thermal pressure (Pth/k ∼ 4.9 × 103–104 K cm−3), the mean magnetic field (∼3–11 μG), and the sonic Mach number of the selected clumps have values comparable to those reported in observations. We find, however, that the cloud sample cannot be described by a single regime concerning their pressure balance and their Alfvénic Mach number. We measured the morphological properties of clumps mainly through the asphericity and the prolatness, which appear to be more sensitive than the aspect ratios. From this analysis, we find that the presence of magnetic field, even if it is weak, does qualitatively affect the morphology of the clumps by increasing the probability of having highly aspherical and highly plolate clumps by a factor of two, that is by producing more filamentary clumps. Finally, we find that the angle between the main direction of the clumps and the local magnetic field lies between ∼π/4 and π/2 and shifts to more perpendicular alignments as the intensity of this field increases, while the relative direction between the local density structure and the local magnetic field transits from parallel to perpendicular.

Funder

CONACYT

DGAPA, UNAM

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3