Affiliation:
1. Astrophysics Research Institute, Liverpool John Moores University, Liverpool Science Park IC2, 146 Brownlow Hill, Liverpool L3 5RF, UK
Abstract
ABSTRACT
Polarization plays an important role in various time-domain astrophysics to understand the magnetic fields, geometry, and environments of spatially unresolved variable sources. In this paper we present the results of laboratory and on-sky testing of a novel dual-beam, dual-camera optical imaging polarimeter (MOPTOP) exploiting high sensitivity, low-noise CMOS technology, and designed to monitor variable and transient sources with low systematic errors and high sensitivity. We present a data reduction algorithm that corrects for sensitivity variations between the cameras on a source-by-source basis. Using our data reduction algorithm, we show that our dual-beam, dual-camera technique delivers the benefits of low and stable instrumental polarization (<0.05 per cent for lab data and <0.25 per cent for on sky data) and high throughput while avoiding the additional sky brightness and image overlap problems associated with dual-beam, single-camera polarimeters.
Funder
Science and Technology Facilities Council
Publisher
Oxford University Press (OUP)
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献