The radio emission in radio-quiet quasars: the VLBA perspective

Author:

Chen Sina1ORCID,Laor Ari1,Behar Ehud1ORCID,Baldi Ranieri D2ORCID,Gelfand Joseph D3

Affiliation:

1. Physics Department, Technion , Haifa 32000 , Israel

2. INAF - Istituto di Radioastronomia , via Gobetti 101, 40129 Bologna , Italy

3. NYU Abu Dhabi , PO Box 129188, Abu Dhabi , UAE

Abstract

ABSTRACT The origin of the radio emission in radio-quiet quasars (RQQ) is not established yet. We present new VLBA observations at 1.6 and 4.9 GHz of 10 RQQ (9 detected), which together with published earlier observations of 8 RQQ (5 detected), forms a representative sample of 18 RQQ drawn from the Palomar–Green sample of low z (< 0.5) AGN. The spectral slope of the integrated emission extends from very steep (α < −1.98) to strongly inverted (α = +2.18), and the slopes of 9 of the 14 objects are flat (α > −0.5). Most objects have an unresolved flat-spectrum core, which coincides with the optical Gaia position. The extended emission is generally steep-spectrum, has a low brightness temperature (< 107 K), and is displaced from the optical core (the Gaia position) by ∼ 5–100 pc. The VLBA core flux is tightly correlated with the X-ray flux, and follows a radio to X-ray luminosity relation of log LR/LX ≃ −6, for all objects with a black hole mass log MBH/M⊙ < 8.5. The flatness of the core emission implies a compact source size (≲ 0.1 pc), which likely originates from the accretion disc corona. The mas-scale extended emission is optically thin and of clumpy structure, and is likely produced by an outflow from the center. Radio observations at higher frequencies can further test the accretion disc coronal emission interpretation for the core emission in RQQ.

Funder

Israel Science Foundation

National Science Foundation

European Space Agency

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3