The first Hubble diagram and cosmological constraints using superluminous supernovae

Author:

Inserra C1ORCID,Sullivan M2ORCID,Angus C R3ORCID,Macaulay E4,Nichol R C5,Smith M26ORCID,Frohmaier C5ORCID,Gutiérrez C P278ORCID,Vicenzi M5ORCID,Möller A9,Brout D10ORCID,Brown P J11,Davis T M12ORCID,D’Andrea C B10,Galbany L13ORCID,Kessler R1415,Kim A G16ORCID,Pan Y-C17,Pursiainen M2ORCID,Scolnic D15ORCID,Thomas B P5,Wiseman P2ORCID,Abbott T M C18,Annis J19,Avila S20ORCID,Bertin E2122ORCID,Brooks D23,Burke D L2425,Carnero Rosell A2627ORCID,Carrasco Kind M2829ORCID,Carretero J30,Castander F J3132,Cawthon R33ORCID,Desai S34,Diehl H T19,Eifler T F3536ORCID,Finley D A19,Flaugher B19,Fosalba P3132ORCID,Frieman J1519,Garcia-Bellido J20ORCID,Gaztanaga E3132ORCID,Gerdes D W3738,Giannantonio T3940,Gruen D242541ORCID,Gruendl R A2829,Gschwend J2742,Gutierrez G19,Hollowood D L43,Honscheid K44,James D J45,Krause E35,Kuehn K46,Kuropatkin N19,Li T S1419ORCID,Lidman C47ORCID,Lima M2748,Maia M A G2742,Marshall J L10,Martini P44,Menanteau F2829,Miquel R3049,Plazas Malagón A A50ORCID,Romer A K51,Roodman A2425,Sako M10,Sanchez E26,Scarpine V19,Schubnell M38,Serrano S3132,Sevilla-Noarbe I26,Soares-Santos M52ORCID,Sobreira F2653,Suchyta E54ORCID,Swanson M E C29,Tarle G38,Thomas D5ORCID,Tucker D L19,Vikram V55,Walker A R18,Zhang Y19,Asorey J56,Calcino J12,Carollo D57,Glazebrook K58,Hinton S R12ORCID,Hoormann J K12,Lewis G F59ORCID,Sharp R47,Swann E2,Tucker B E47,

Affiliation:

1. School of Physics and Astronomy, Cardiff University, Queens Buildings, The Parade, Cardiff CF24 3AA, UK

2. School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, UK

3. DARK, Niels Bohr Institute, University of Copenhagen, Lyngbyvej 2, DK-2100 Copenhagen Ø, Denmark

4. Department of Physics and Astronomy, University of North Georgia, Dahlonega, GA 30597, USA

5. Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth PO1 3FX, UK

6. Institut de Physique des Deux Infinis, Université de Lyon 1, CNRS/IN2P3, F-69622 Villeurbanne Cedex, France

7. Finnish Centre for Astronomy with ESO (FINCA), FI-20014 University of Turku, Finland

8. Tuorla Observatory, Department of Physics and Astronomy, FI-20014 University of Turku, Finland

9. Universite Clermont Auvergne, CNRS/IN2P3, LPC, F-63000 Clermont-Ferrand, France

10. Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA

11. George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, and Department of Physics and Astronomy, Texas A&M University, College Station, TX 77843, USA

12. School of Mathematics and Physics, University of Queensland, Brisbane, QLD 4072, Australia

13. Departamento de Física Teórica y del Cosmos, Universidad de Granada, E-18071 Granada, Spain

14. Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637, USA

15. Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA

16. Lawrence Berkeley National Lab, 1 Cyclotron Rd., Berkeley, CA 94720, USA

17. Division of Science, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan

18. Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, Casilla 603, La Serena, Chile

19. Fermi National Accelerator Laboratory, PO Box 500, Batavia, IL 60510, USA

20. Instituto de Fisica Teorica UAM/CSIC, Universidad Autonoma de Madrid, E-28049 Madrid, Spain

21. Institut d’Astrophysique de Paris, CNRS, UMR 7095, F-75014 Paris, France

22. Institut d’Astrophysique de Paris, Sorbonne Universités, UPMC Univ Paris 06, UMR 7095, F-75014 Paris, France

23. Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK

24. Kavli Institute for Particle Astrophysics and Cosmology, PO Box 2450, Stanford University, Stanford, CA 94305, USA

25. SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA

26. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid 28040, Spain

27. Laboratório Interinstitucional de e-Astronomia - LIneA, Rua Gal. José Cristino 77, 20921-400 Rio de Janeiro, RJ, Brazil

28. Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 W. Green Street, Urbana, IL 61801, USA

29. National Center for Supercomputing Applications, 1205 West Clark St, Urbana, IL 61801, USA

30. Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, E-08193 Bellaterra (Barcelona), Spain

31. Institut d’Estudis Espacials de Catalunya (IEEC), E-08034 Barcelona, Spain

32. Institute of Space Sciences (ICE, CSIC), Campus UAB, Carrer de Can Magrans, s/n, E-08193 Barcelona, Spain

33. Physics Department, University of Wisconsin-Madison, 2320 Chamberlin Hall, 1150 University Avenue, Madison, WI 53706-1390, USA

34. Department of Physics, IIT Hyderabad, Kandi, Telangana 502285, India

35. Department of Astronomy/Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721-0065, USA

36. Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109, USA

37. Department of Astronomy, University of Michigan, Ann Arbor, MI 48109, USA

38. Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA

39. Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK

40. Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK

41. Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, CA 94305, USA

42. Observatório Nacional, Rua Gal. José Cristino 77, 20921-400 Rio de Janeiro, RJ, Brazil

43. Santa Cruz Institute for Particle Physics, Santa Cruz, CA 95064, USA

44. Center for Cosmology and Astro-Particle Physics, The Ohio State University, Columbus, OH 43210, USA

45. ASTRAVEO LLC, PO Box 1668, Gloucester, MA 01931, USA

46. Australian Astronomical Optics, Macquarie University, North Ryde, NSW 2113, Australia

47. The Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611, Australia

48. Departamento de Física Matemática, Instituto de Física, Universidade de São Paulo, CP 66318, 05314-970 São Paulo, SP, Brazil

49. Institució Catalana de Recerca i Estudis Avançats, E-08010 Barcelona, Spain

50. Department of Astrophysical Sciences, Princeton University, Peyton Hall, Princeton, NJ 08544, USA

51. Department of Physics and Astronomy, Pevensey Building, University of Sussex, Brighton BN1 9QH, UK

52. Physics Department, Brandeis University, 415 South Street, Waltham, MA 02453, USA

53. Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, 13083-859 Campinas, SP, Brazil

54. Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

55. Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA

56. Korea Astronomy and Space Science Institute, Yuseong-gu, Daejeon 305-348, Korea

57. INAF, Astrophysical Observatory of Turin, I-10025 Pino Torinese, Italy

58. Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Melbourne, VIC 3122, Australia

59. Sydney Institute for Astronomy, School of Physics A28, The University of Sydney, Sydney, NSW 2006, Australia

Abstract

ABSTRACT We present the first Hubble diagram of superluminous supernovae (SLSNe) out to a redshift of two, together with constraints on the matter density, ΩM, and the dark energy equation-of-state parameter, w(≡p/ρ). We build a sample of 20 cosmologically useful SLSNe I based on light curve and spectroscopy quality cuts. We confirm the robustness of the peak–decline SLSN I standardization relation with a larger data set and improved fitting techniques than previous works. We then solve the SLSN model based on the above standardization via minimization of the χ2 computed from a covariance matrix that includes statistical and systematic uncertainties. For a spatially flat Λ cold dark matter (ΛCDM) cosmological model, we find $\Omega _{\rm M}=0.38^{+0.24}_{-0.19}$, with an rms of 0.27 mag for the residuals of the distance moduli. For a w0waCDM cosmological model, the addition of SLSNe I to a ‘baseline’ measurement consisting of Planck temperature together with Type Ia supernovae, results in a small improvement in the constraints of w0 and wa of 4 per cent. We present simulations of future surveys with 868 and 492 SLSNe I (depending on the configuration used) and show that such a sample can deliver cosmological constraints in a flat ΛCDM model with the same precision (considering only statistical uncertainties) as current surveys that use Type Ia supernovae, while providing a factor of 2–3 improvement in the precision of the constraints on the time variation of dark energy, w0 and wa. This paper represents the proof of concept for superluminous supernova cosmology, and demonstrates they can provide an independent test of cosmology in the high-redshift (z > 1) universe.

Funder

STFC

University of Portsmouth

Horizon 2020 Framework Programme

FEDER

National Science Foundation

MINECO

ERDF

European Union

CERCA

European Union Seventh Framework Programme

CNPq

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3