Gamma-rays from reaccelerated cosmic rays in high-velocity clouds colliding with the Galactic disc

Author:

del Valle Maria V1ORCID

Affiliation:

1. Universidade de São Paulo, Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Rua do Matão, 1226 - Cidade Universitária, São Paulo - SP 05508-090, Brazil

Abstract

ABSTRACT High-velocity clouds moving towards the disc will reach the Galactic plane and will inevitably collide with the disc. In these collisions, a system of two shocks is produced, one propagating through the disc and the other develops within the cloud. The shocks produced within the clouds in these interactions have velocities of hundreds of kilometres per second. When these shocks are radiative they may be inefficient in accelerating fresh particles; however, they can reaccelerate and compress Galactic cosmic rays from the background. In this work, we investigate the interactions of Galactic cosmic rays within a shocked high-velocity cloud, when the shock is induced by the collision with the disc. This study is focused in the case of radiative shocks. We aim to establish under which conditions these interactions lead to significant non-thermal emission, especially gamma-rays. We model the interaction of cosmic ray protons and electrons reaccelerated and further energized by compression in shocks within the clouds, under very general assumptions. We also consider secondary electron–positron pairs produced by the cosmic ray protons when colliding with the material of the cloud. We conclude that nearby clouds reaccelerating Galactic cosmic rays in local shocks can produce high-energy radiation that might be detectable with existing and future gamma-ray detectors. The emission produced by electrons and secondary pairs is important at radio wavelengths, and in some cases it may be relevant at hard X-rays. Concerning higher energies, the leptonic contribution to the spectral energy distribution is significant at soft gamma-rays.

Funder

FAPESP

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3