The sensitivity of the redshift distribution to galaxy demographics

Author:

Sudek Philipp1ORCID,de la Bella Lucia F1,Amara Adam1,Hartley William G2

Affiliation:

1. Institute of Cosmology and Gravitation, University of Portsmouth , Portsmouth PO1 3FX, UK

2. Department of Astronomy, University of Geneva , Chemin d’Ecogia 16, CH-1290 Versoix, Switzerland

Abstract

ABSTRACT Photometric redshifts are commonly used to measure the distribution of galaxies in large surveys. However, the demands of ongoing and future large-scale cosmology surveys place very stringent limits on the redshift performance that are difficult to meet. A new approach to meet this precision need is forward modelling, which is underpinned by realistic simulations. In the work presented here, we use simulations to study the sensitivity of redshift distributions to the underlying galaxy population demographics. We do this by varying the redshift evolving parameters of the Schechter function for two galaxy populations: star-forming and quenched galaxies. Each population is characterized by eight parameters. We find that the redshift distribution of shallow surveys, such as the Sloan Digital Sky Survey (SDSS), is mainly sensitive to the parameters for quenched galaxies. However, for deeper surveys such as the Dark Energy Survey (DES) and the Hyper Suprime-Cam (HSC), the star-forming parameters have a stronger impact on the redshift distribution. Specifically, the slope of the characteristic magnitude, aM, for star-forming galaxies has overall the strongest impact on the redshift distribution. Decreasing aM by 148 per cent (its given uncertainty) shifts the mean redshift by ∼45 per cent. We explore which combination of colour and magnitude measurements is most sensitive to aM and we find that each colour–magnitude pair studied is similarly affected by a modification of aM.

Funder

Royal Society

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3