Simulating galaxy formation in f(R) modified gravity: matter, halo, and galaxy statistics

Author:

Arnold Christian1ORCID,Li Baojiu1ORCID

Affiliation:

1. Institute for Computational Cosmology, Department of Physics, Durham University, South Road, Durham DH1 3LE, UK

Abstract

ABSTRACT We present an analysis of the matter, halo, and galaxy clustering in f(R)-gravity employing the SHYBONE full-physics hydrodynamical simulation suite. Our analysis focuses on the interplay between baryonic feedback and f(R)-gravity in the matter power spectrum, the matter and halo correlation functions, the halo and galaxy–host–halo mass function, the subhalo and satellite–galaxy count, and the correlation function of the stars in our simulations. Our studies of the matter power spectrum in full-physics simulations in f(R)-gravity show that it will be very difficult to derive accurate fitting formulae for the power spectrum enhancement in f(R)-gravity which include baryonic effects. We find that the enhancement of the halo mass function due to f(R)-gravity and its suppression due to feedback effects do not show significant back-reaction effects and can thus be estimated from independent general relativity-hydro and f(R) dark matter only simulations. Our simulations furthermore show that the number of subhaloes and satellite-galaxies per halo is not significantly affected by f(R)-gravity. Low-mass haloes are nevertheless more likely to be populated by galaxies in f(R)-gravity. This suppresses the clustering of stars and the galaxy correlation function in the theory compared to standard cosmology.

Funder

European Research Council

Science and Technology Facilities Council

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An implementation of nDGP gravity in Pinocchio;Journal of Cosmology and Astroparticle Physics;2024-07-01

2. Finite-time cosmological singularities and the possible fate of the Universe;Physics Reports;2023-09

3. Scalar induced gravitational waves from primordial black hole Poisson fluctuations in f(R) gravity;Journal of Cosmology and Astroparticle Physics;2022-10-01

4. Fingerprints of modified gravity on galaxies in voids;Monthly Notices of the Royal Astronomical Society;2022-07-29

5. Distinguishing between ΛCDM and f(R) gravity models using halo ellipticity correlations in simulations;Monthly Notices of the Royal Astronomical Society;2022-07-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3