Application of convolutional neural networks for stellar spectral classification

Author:

Sharma Kaushal1ORCID,Kembhavi Ajit1,Kembhavi Aniruddha23,Sivarani T4,Abraham Sheelu5,Vaghmare Kaustubh1

Affiliation:

1. Inter University Centre for Astronomy and Astrophysics, Pune 411007, India

2. PRIOR, Allen Institute for Artificial Intelligence, Seattle 98103, USA

3. Department of Computer Science and Engineering, University of Washington, Seattle 98195, USA

4. Indian Institute of Astrophysics, Koramangala, Bengaluru 560034, India

5. Department of Physics, Mar Thoma College, Chungathara 679334, Nilambur, India

Abstract

ABSTRACT Due to the ever-expanding volume of observed spectroscopic data from surveys such as SDSS and LAMOST, it has become important to apply artificial intelligence (AI) techniques for analysing stellar spectra to solve spectral classification and regression problems like the determination of stellar atmospheric parameters Teff, $\rm {\log g}$, and [Fe/H]. We propose an automated approach for the classification of stellar spectra in the optical region using convolutional neural networks (CNNs). Traditional machine learning (ML) methods with ‘shallow’ architecture (usually up to two hidden layers) have been trained for these purposes in the past. However, deep learning methods with a larger number of hidden layers allow the use of finer details in the spectrum which results in improved accuracy and better generalization. Studying finer spectral signatures also enables us to determine accurate differential stellar parameters and find rare objects. We examine various machine and deep learning algorithms like artificial neural networks, Random Forest, and CNN to classify stellar spectra using the Jacoby Atlas, ELODIE, and MILES spectral libraries as training samples. We test the performance of the trained networks on the Indo-U.S. Library of Coudé Feed Stellar Spectra (CFLIB). We show that using CNNs, we are able to lower the error up to 1.23 spectral subclasses as compared to that of two subclasses achieved in the past studies with ML approach. We further apply the trained model to classify stellar spectra retrieved from the SDSS data base with SNR > 20.

Funder

Department of Atomic Energy, Government of India

Alfred P. Sloan Foundation

U.S. Department of Energy

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3