Towards including super-sample covariance in the unbinned likelihood for cluster abundance cosmology

Author:

Payerne C12ORCID,Murray C23,Combet C2ORCID,Penna-Lima M456

Affiliation:

1. Université Paris-Saclay , CEA, IRFU, F-91191 Gif-sur-Yvette , France

2. Université Grenoble Alpes , CNRS-IN2P3, LPSC, F-38000 Grenoble , France

3. Université Paris Cité , CNRS-IN2P3, APC, F-75013 Paris , France

4. Instituto de Física , Universidade de Brasília, 70910-900, Brasília, DF , Brazil

5. Centro Internacional de Física, Instituto de Física , Universidade de Brasília, 70910-900, Brasília, DF , Brazil

6. Departamento de Física, Universidade Estadual de Londrina , Rod. Celso Garcia Cid, Km 380, 86057-970, Londrina, Paraná , Brazil

Abstract

ABSTRACT The measurement of the abundance of galaxy clusters in the Universe is a sensitive probe of cosmology, which depends on both the expansion history of the Universe and the growth of structure. Density fluctuations across the finite survey volume add noise to this measurement, this is often referred to as super-sample covariance (SSC). For an unbinned cluster analysis, such noise has not been included in the cluster likelihood, since the effect of SSC was small compared to the Poisson shot-noise for samples of a few hundred clusters. For upcoming large cluster surveys such as the Rubin LSST, which will deliver catalogues of tens of thousands of clusters, this effect will no longer be negligible. In this paper, we propose a new hybrid likelihood based on the Gauss-Poisson Compound model (GPC), by using infinitesimal mass bins and standard redshift bins. This likelihood has the advantages of an unbinned Poisson likelihood while successfully incorporating the effects of SSC. Using a simulated dark matter halo catalogue, we find that the hybrid likelihood, accounting for both Poisson noise and SSC, increases the dispersion of the parameter posteriors by 20 per cent when using 100 000 clusters compared to the standard unbinned likelihood, based on Poisson statistics only.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3