Biventricular pacing during cardiac magnetic resonance imaging

Author:

Vago Hajnalka1,Czimbalmos Csilla1,Papp Roland1,Szabo Liliana1,Toth Attila1,Dohy Zsofia1,Csecs Ibolya1,Suhai Ferenc1,Kosztin Annamaria1,Molnar Levente1,Geller Laszlo1,Merkely Bela1ORCID

Affiliation:

1. Heart and Vascular Center, Semmelweis University, Budapest, Hungary

Abstract

Abstract Aims We aimed to assess the effect of cardiac resynchronization on left ventricular (LV) function, volumes, geometry, and mechanics in order to demonstrate reverse remodelling using cardiac magnetic resonance (CMR) with resynchronization on. Methods and results New York Heart Association (NYHA) Class II–III patients on optimal medical therapy with LV ejection fraction (LVEF) ≤35%, and complete LBBB with broad QRS (>150 ms) were prospectively recruited. Cardiac magnetic resonance examination was performed at baseline and at 6-month follow-up, applying both biventricular and AOO pacing. The following data were measured: conventional CMR parameters, remodelling indices, global longitudinal, circumferential, radial strain, global dyssynchrony [mechanical dispersion (MD) defined as the standard deviation of time to peak longitudinal/circumferential strain in 16 LV segments], and regional dyssynchrony (maximum differences in time between peak septal and lateral transversal displacement). Thirteen patients (64 ± 7 years, 38% male) were enrolled. Comparing the baseline and follow-up CMR parameters measured during biventricular pacing, significant increase in LVEF, and decrease in LV end-diastolic volume index (LVEDVi) and LV end-systolic volume index (LVESVi) were found. Left ventricular remodelling indices, global longitudinal, circumferential, and radial strain values showed significant improvement. Circumferential MD decreased (20.5 ± 5.5 vs. 13.4 ± 3.4, P < 0.001), while longitudinal MD did not change. Regional dyssynchrony drastically improved (362 ± 96 vs. 104 ± 66 ms, P < 0.001). Applying AOO pacing resulted in an immediate deterioration in LVEF, LVESVi, circumferential strain, global and regional dyssynchrony. Conclusion Cardiac magnetic resonance imaging during biventricular pacing is feasible and enables a more precise quantification of LV function, morphology, and mechanics. As a result, it may contribute to a better understanding of the effects of resynchronization therapy and might improve responder rate in the future.

Funder

National Research, Development and Innovation Office of Hungary

NKFIA

Ministry for Innovation and Technology in Hungary

Therapeutic Development thematic programme of the Semmelweis University

Medtronic Hungary

Publisher

Oxford University Press (OUP)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3