Combining home monitoring temporal trends from implanted defibrillators and baseline patient risk profile to predict heart failure hospitalizations: results from the SELENE HF study

Author:

D’Onofrio Antonio1,Solimene Francesco2,Calò Leonardo3,Calvi Valeria4,Viscusi Miguel5,Melissano Donato6,Russo Vitantonio7,Rapacciuolo Antonio8ORCID,Campana Andrea9,Caravati Fabrizio10,Bonfanti Paolo11,Zanotto Gabriele12,Gronda Edoardo13,Vado Antonello14,Calzolari Vittorio15,Botto Giovanni Luca11,Zecchin Massimo16,Bontempi Luca17,Giacopelli Daniele18ORCID,Gargaro Alessio18ORCID,Padeletti Luigi19

Affiliation:

1. Cardiology Department - Electrophysiology and Cardiac Pacing Unit A.O.R.N. V. Monaldi, Via L. Bianchi, Naples, Italy

2. Electrophysiology, Montevergine Clinic, Viale S. Modestino 8, 83013 Mercogliano, Italy

3. Cardiology Division, Policlinico Casilino, Via Casilina 1049, 00169 Rome, Italy

4. Cardiology Department, Policlinico G. Rodolico, AOU Policlinico V. Emanuele, Via S. Sofia 78, 95125 Catania, Italy

5. Cardiology Division, Sant'Anna and San Sebastiano Hospital, Via F. Palasciano, 81100 Caserta, Italy

6. Cardiology Division, F. Ferrari Hospital, Viale F. Ferrari 1, 73042 Casarano (LE), Italy

7. Cardiology Division, SS. Annunziata Hospital, Via F. Bruno 1, 74121 Taranto, Italy

8. Cardiology Department of Advanced Biomedical Sciences, Corso Umberto I 40, 80138 Federico II University of Naples, Italy

9. Cardiology Division, A.O.U. San Giovanni di Dio e Ruggi D'Aragona, Via San Leonardo 1, 84131 Salerno, Italy

10. Division of Cardiology, ASST Settelaghi, Di Circolo Hospital, Via L. Borri 57, 21100 Varese, Italy

11. Cardiology Division, Rho Civil Hospital, Corso Europa 250, 20017 Rho (MI), Italy

12. Cardiology Division, Mater Salutis Hospital, Via C. Gianella 1, 37045 Legnago, Italy

13. Department of Medicine and Medical Specialties, I.R.C.C.S. Foundation Ca’ Granda, Via M. Fanti 6, 20122 Milano, Italy

14. Cardiology Division, S. Croce e Carle Hospital, Via M. Coppino 26, 12100 Cuneo, Italy

15. Cardiology Division, Santa Maria di Ca' Foncello Hospital, Piazzale dell’Ospedale 1, 31100 Treviso, Italy

16. Cardiology Department, Cattinara University Hospital, Strada di Fiume 447, 34149 Trieste, Italy

17. Cardiology Division, Spedali Civili , Piazzale Spedali Civili 1, 25123 Brescia, Italy

18. BIOTRONIK Italia, Via delle Industrie 11, 20090 Vimodrone (MI), Italy

19. Cardiology Department, I.R.C.C.S. MultiMedica, Via Milanese 300, 20099 Sesto San Giovanni, Milano, Italy

Abstract

Abstract Aims We developed and validated an algorithm for prediction of heart failure (HF) hospitalizations using remote monitoring (RM) data transmitted by implanted defibrillators. Methods and results The SELENE HF study enrolled 918 patients (median age 69 years, 81% men, median ejection fraction 30%) with cardiac resynchronization therapy (44%), dual-chamber (38%), or single-chamber defibrillators with atrial diagnostics (18%). To develop a predictive algorithm, temporal trends of diurnal and nocturnal heart rates, ventricular extrasystoles, atrial tachyarrhythmia burden, heart rate variability, physical activity, and thoracic impedance obtained by daily automatic RM were combined with a baseline risk-stratifier (Seattle HF Model) into one index. The primary endpoint was the first post-implant adjudicated HF hospitalization. After a median follow-up of 22.5 months since enrolment, patients were randomly allocated to the algorithm derivation group (n = 457; 31 endpoints) or algorithm validation group (n = 461; 29 endpoints). In the derivation group, the index showed a C-statistics of 0.89 [95% confidence interval (CI): 0.83–0.95] with 2.73 odds ratio (CI 1.98–3.78) for first HF hospitalization per unitary increase of index value (P < 0.001). In the validation group, sensitivity of predicting primary endpoint was 65.5% (CI 45.7–82.1%), median alerting time 42 days (interquartile range 21–89), and false (or unexplained) alert rate 0.69 (CI 0.64–0.74) [or 0.63 (CI 0.58–0.68)] per patient-year. Without the baseline risk-stratifier, the sensitivity remained 65.5% and the false/unexplained alert rates increased by ≈10% to 0.76/0.71 per patient-year. Conclusion With the developed algorithm, two-thirds of first post-implant HF hospitalizations could be predicted timely with only 0.7 false alerts per patient-year.

Funder

BIOTRONIK SE & Co.

Publisher

Oxford University Press (OUP)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3