Current of injury amplitude during left bundle branch area pacing implantation: impact of filter settings, ventricular pacing, and lead type

Author:

Burri Haran1ORCID,Valiton Valérian1ORCID,Spadotto Alberto1,Herbert Julia1,Masson Nicolas1

Affiliation:

1. Cardiac Pacing Unit, Department of Cardiology, University Hospital of Geneva , rue Gabrielle Perret Gentil 4, 1211 Geneva , Switzerland

Abstract

Abstract Aims Monitoring current of injury (COI) during left bundle branch area pacing (LBBAP) implantation is useful to evaluate lead depth. Technical aspects for recording COI amplitude have not been well studied. Our aims were to evaluate the impact of high-pass filter settings on electrogram recordings during LBBAP implantation. Methods and results Consecutive patients with successful LBBAP implantation had unipolar recordings of COI at final lead position at different high-pass filter settings (0.01–1 Hz) from the tip electrode during sensing and pacing, and from the ring electrode during sensing. Duration of saturation-induced signal loss was also measured at each filter setting. COI amplitudes were compared between lumenless and stylet-driven leads. A total of 156 patients (96 males, aged 81.4 ± 9.6 years) were included. Higher filter settings led to significantly lower COI amplitudes. In 50 patients with COI amplitude < 10 mV, the magnitude of the drop was on average 1–1.5 mV (and up to 4 mV) between 0.05 and 0.5 Hz, meaning that cut-offs may not be used interchangeably. Saturation-induced signal loss was on average 10 s at 0.05 Hz and only 2 s with 0.5 Hz. When pacing was interrupted, the sensed COI amplitude varied (either higher or lower) by up to 4 mV, implying that it is advisable to periodically interrupt pacing to evaluate the sensed COI when reaching levels of ∼10 mV. Lead type did not impact COI amplitude. Conclusion High-pass filters have a significant impact on electrogram characteristics at LBBAP implantation, with the 0.5 Hz settings having the most favourable profile.

Funder

GeCOR

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3