Efficient identification of scars using heterogeneous model hierarchies

Author:

Chegini Fatemeh12,Kopaničáková Alena12,Krause Rolf12ORCID,Weiser Martin23ORCID

Affiliation:

1. Institute of Computational Science, USI, Lugano, Switzerland

2. Center for Computational Medicine in Cardiology, USI, Lugano, Switzerland

3. Zuse Institute Berlin, Takustr 7, 14195 Berlin, Germany

Abstract

Abstract Aims Detection and quantification of myocardial scars are helpful for diagnosis of heart diseases and for personalized simulation models. Scar tissue is generally characterized by a different conduction of excitation. We aim at estimating conductivity-related parameters from endocardial mapping data. Solving this inverse problem requires computationally expensive monodomain simulations on fine discretizations. We aim at accelerating the estimation by combining electrophysiology models of different complexity. Methods and results Distributed parameter estimation is performed by minimizing the misfit between simulated and measured electrical activity on the endocardial surface, subject to the monodomain model and regularization. We formulate this optimization problem, including the modelling of scar tissue and different regularizations, and design an efficient solver. We consider grid hierarchies and monodomain–eikonal model hierarchies in a recursive multilevel trust-region method. With numerical examples, efficiency and estimation quality, depending on the data, are investigated. The multilevel solver is significantly faster than a comparable single level solver. Endocardial mapping data of realistic density appears to be sufficient to provide quantitatively reasonable estimates of location, size, and shape of scars close to the endocardial surface. Conclusion In several situations, scar reconstruction based on eikonal and monodomain models differ significantly, suggesting the use of the more involved monodomain model for this purpose. Eikonal models can accelerate the computations considerably, enabling the use of complex electrophysiology models for estimating myocardial scars from endocardial mapping data.

Funder

Swiss National Science Foundation

Theo-Rossi di Montelera (TRM) foundation

Publisher

Oxford University Press (OUP)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3