Deep learning formulation of electrocardiographic imaging integrating image and signal information with data-driven regularization

Author:

Bacoyannis Tania1ORCID,Ly Buntheng1,Cedilnik Nicolas12ORCID,Cochet Hubert2ORCID,Sermesant Maxime12ORCID

Affiliation:

1. Inria, Université Côte d’Azur, Epione team, Sophia Antipolis, France

2. IHU Liryc, University of Bordeaux, Bordeaux, France

Abstract

Abstract Aims Electrocardiographic imaging (ECGI) is a promising tool to map the electrical activity of the heart non-invasively using body surface potentials (BSP). However, it is still challenging due to the mathematically ill-posed nature of the inverse problem to solve. Novel approaches leveraging progress in artificial intelligence could alleviate these difficulties. Methods and results We propose a deep learning (DL) formulation of ECGI in order to learn the statistical relation between BSP and cardiac activation. The presented method is based on Conditional Variational AutoEncoders using deep generative neural networks. To quantify the accuracy of this method, we simulated activation maps and BSP data on six cardiac anatomies. We evaluated our model by training it on five different cardiac anatomies (5000 activation maps) and by testing it on a new patient anatomy over 200 activation maps. Due to the probabilistic property of our method, we predicted 10 distinct activation maps for each BSP data. The proposed method is able to generate volumetric activation maps with a good accuracy on the simulated data: the mean absolute error is 9.40 ms with 2.16 ms standard deviation on this testing set. Conclusion The proposed formulation of ECGI enables to naturally include imaging information in the estimation of cardiac electrical activity from BSP. It naturally takes into account all the spatio-temporal correlations present in the data. We believe these features can help improve ECGI results.

Funder

ERC

National Research Agency

Theo-Rossi di Montelera (TRM) foundation

Publisher

Oxford University Press (OUP)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3