PERFORMANCE OF HANDHELD NAI(TL) SPECTROMETERS AS DOSIMETERS BY LABORATORY AND FIELD DOSE RATE MEASUREMENTS

Author:

Clouvas A1,Xanthos S2,Boziari A3,Leontaris F1,Kaissas I3,Omirou M1

Affiliation:

1. Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Thessaloniki GR-54124, Greece

2. Department of Industrial Engineering and Management, International Hellenic University, Thessaloniki GR-57001, Greece

3. Greek Atomic Energy Commission, Agia Paraskevi GR-15310, Greece

Abstract

Abstract In the framework of the IAEA Coordinated Research Project (CRP) J02012 on ‘Advancing Radiation Detection Equipment for Detecting Nuclear and Other Radioactive Material Out of Regulatory Control’, the properties of two commercial instruments (1) InSpector 1000 analyzer (Canberra), with a 2″ × 2″ NaI(Tl) scintillator and (2) RIIDEYE M-G3 analyzer (Thermo Scientific), with a 3″ × 3″ NaI(Tl) scintillator, were evaluated as dosimeters by laboratory and field measurements. In the Ionizing Radiation Calibration Laboratory (IRCL) of the Greek Atomic Energy Commission, the NaI(Tl) spectrometers were tested in order to measure Ambient gamma Dose Equivalent Rate (ADER). The NaI(Tl) scintillators were irradiated in a homogeneous field with 662 keV photons with different ADER values from 0.17 to 100 μSv h−1 at 0° incidence (irradiation field perpendicular to the detector’s front window) and at 90° incidence. For each irradiation, the measured ADER by the spectrometers and the ‘true’ ADER values (provided by the IRCL) were compared. In addition, the angular dependence (0–359°) of the ADER response of the spectrometers was studied with a 152Eu source placed at 1, 2 and 3 m from the spectrometers. The ADER dependence as function of the distance from the 152Eu source (at 0° incidence) measured by the two detectors was compared with the theoretical one. In the field studies, ADER was measured by the spectrometers at seven locations belonging to the Greek Early Warning System Network (which is based on Reuter-Stokes ionization chambers). These locations have different ADER values ranging from 20 to 120 nSv h−1. In these locations, gamma ADER were also deduced (1) by in situ gamma spectrometry measurements with portable Germanium HPGe detectors and (2) by the Reuter-Stokes ionization chambers (by subtraction of the cosmic radiation). Gamma dose measurements were also performed with the InSpector 1000 and RIIDEYE M-G3 detectors in 25 locations (beaches) of Northern Greece and compared with the ADER values deduced by sand sample analysis with gamma spectroscopy. Beaches with sand are good candidates for such type of measurements since they are commonly flat and in principle the natural radionuclides are homogenously distributed.

Funder

Advancing Radiation Detection Equipment for Detecting Nuclear and Other Radioactive Material Out of Regulatory Control

Publisher

Oxford University Press (OUP)

Subject

Public Health, Environmental and Occupational Health,Radiology Nuclear Medicine and imaging,General Medicine,Radiation,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3