FTO is a transcriptional repressor to auto-regulate its own gene and potentially associated with homeostasis of body weight

Author:

Liu Shu-Jing1,Tang Hui-Ling1,He Qian2,Lu Ping1,Fu Tao2,Xu Xu-Ling1,Su Tao1,Gao Mei-Mei1,Duan Shumin13,Luo Yan2,Long Yue-Sheng1

Affiliation:

1. Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China

2. School of Basic Medical Sciences, Zhejiang University, Hangzhou, China

3. Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China

Abstract

Abstract Fat mass and obesity-associated (FTO) protein is a ferrous ion (Fe2+)/2-oxoglutarate (2-OG)-dependent demethylase preferentially catalyzing m6A sites in RNA. The FTO gene is highly expressed in the hypothalamus with fluctuation in response to various nutritional conditions, which is believed to be involved in the control of whole body metabolism. However, the underlying mechanism in response to different nutritional cues remains poorly understood. Here we show that ketogenic diet-derived ketone body β-hydroxybutyrate (BHB) transiently increases FTO expression in both mouse hypothalamus and cultured cells. Interestingly, the FTO protein represses Fto promoter activity, which can be offset by BHB. We then demonstrate that FTO binds to its own gene promoter, and Fe2+, but not 2-OG, impedes this binding and increases FTO expression. The BHB-induced occupancy of the promoter by FTO influences the assembly of the basal transcriptional machinery. Importantly, a loss-of-function FTO mutant (I367F), which induces a lean phenotype in FTOI367F mice, exhibits augmented binding and elevated potency to repress the promoter. Furthermore, FTO fails to bind to its own promoter that promotes FTO expression in the hypothalamus of high-fat diet-induced obese and 48-h fasting mice, suggesting a disruption of the stable expression of this gene. Taken together, this study uncovers a new function of FTO as a Fe2+-sensitive transcriptional repressor dictating its own gene switch to form an auto-regulatory loop that may link with the hypothalamic control of body weight.

Funder

National Institutes of Health

Innovative Academic Teams of Guangzhou Education System

National Natural Science Foundation of China

Guangzhou Science and Technology Project

Science and Technology Project of Guangdong Province

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Genetics,Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3