Linguistic annotation of cuneiform texts using treebanks and deep learning

Author:

Ong Matthew1,Gordin Shai23ORCID

Affiliation:

1. Middle Eastern Languages and Cultures, UC Berkeley , Berkeley, CA, United States

2. Digital Pasts Lab, Department of Land of Israel Studies and Archaeology, Ariel University , Ariel, Israel

3. Digital Humanities and Social Sciences Hub, Open University of Israel , Ra'anana, Israel

Abstract

Abstract We describe an efficient pipeline for morpho-syntactically annotating an ancient language corpus which takes advantage of bootstrapping techniques. This pipeline is designed for ancient language scholars looking to jump-start their own treebank projects, which can in turn serve further pedagogical research projects in the target language. We situate our work in the field of similar ancient language treebank projects, arguing that our approach shows that individual humanities scholars can leverage current machine-learning tools to produce their own richly annotated corpora. We illustrate this pipeline by producing a new Akkadian-language treebank based on two volumes from the online editions of the State Archives of Assyria project hosted on Oracc, as well as a spaCy language model named AkkParser trained on that treebank. Both of these are made publicly available for annotating other Akkadian corpora. In addition, we discuss linguistic issues particular to the Neo-Assyrian letter corpus and data-encoding complications of cuneiform texts in Oracc. The strategies, language models, and processing scripts we developed to handle both linguistic and data-encoding issues in this project will be of special interest to scholars seeking to develop their own cuneiform treebanks.

Funder

Planning and Budgeting Committee

Ministry of Science & Technology

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3