Disrupted tubular parathyroid hormone/parathyroid hormone receptor signaling and damaged tubular cell viability possibly trigger postsurgical kidney injury in patients with advanced hyperparathyroidism

Author:

Sato Tetsuhiko1ORCID,Kikkawa Yamato2,Yamamoto Suguru3,Tanaka Yusuke2,Kazama Junichiro J4,Tominaga Yoshihiro5,Ichimori Toshihiro5,Okada Manabu5,Hiramitsu Takahisa5,Fukagawa Masafumi6

Affiliation:

1. Division of Diabetes and Endocrinology, Masuko Memorial Hospital/Nagoya Daini Red Cross Hospital, Nagoya, Japan

2. Laboratory of Clinical Biochemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan

3. Division of Clinical Nephrology and Rheumatology, Graduate School of Medical and Dental Science, Niigata University, Niigata, Japan

4. Division of Nephrology and Hypertension, School of Medicine, Fukushima Medical University, Fukushima, Japan

5. Department of Transplant and Endocrine Surgery, Nagoya Daini Red Cross Hospital, Nagoya, Japan

6. Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, Isehara, Japan

Abstract

Abstract Background Parathyroidectomy (PTX) that alleviates clinical manifestations of advanced hyperparathyroidism, including hypercalcemia and hypophosphatemia, is considered the best protection from calcium overload in the kidney. However, little is known about the relationship between postsurgical robust parathyroid hormone (PTH) reduction and perisurgical renal tubular cell viability. Post-PTX kidney function is still a crucial issue for primary hyperparathyroidism (PHPT) and tertiary hyperparathyroidism after kidney transplantation (THPT). Methods As a clinical study, we examined data from 52 consecutive patients (45 with PHPT, 7 with THPT) who underwent PTX in our center between 2015 and 2017 to identify post-PTX kidney injury. Their clinical data, including urinary liver-type fatty acid-binding protein (L-FABP), a tubular biomarker for acute kidney injury (AKI), were obtained from patient charts. An absolute change in serum creatinine level of 0.3 mg/dL (26.5 µmol/L) on Day 2 after PTX defines AKI. Post-PTX calcium supplement dose adjustment was performed to strictly maintain serum calcium at the lower half of the normal range. To mimic post-PTX-related kidney status, a unique parathyroidectomized rat model was produced as follows: 13-week-old rats underwent thyroparathyroidectomy (TPTX) and/or 5/6 subtotal nephrectomy (NX). Indicated TPTX rats were given continuous infusion of a physiological level of 1-34 PTH using a subcutaneously implanted osmotic minipump. Immunofluorescence analyses were performed by polyclonal antibodies against PTH receptor (PTHR) and a possible key modulator of kidney injury, Klotho. Results Patients’ estimated glomerular filtration rate (eGFR) did not have any clinically relevant change (62.5 ± 22.0 versus 59.4 ± 21.9 mL/min/1.73 m2, NS), whereas serum calcium (2.7 ± 0.18 versus 2.2 ± 0.16 mmol/L, P < 0.0001) and phosphorus levels (0.87 ± 0.19 versus 1.1 ± 0.23 mmol/L, P < 0.0001) were normalized and PTH decreased robustly (181 ± 99.1 versus 23.7 ± 16.8 pg/mL, P < 0.0001) after successful PTX. However, six patients who met postsurgical AKI criteria had lower eGFR and greater L-FABP than those without AKI. Receiver operating characteristics (ROC) analysis revealed eGFR <35 mL/min/1.73 m2 had 83% accuracy. Strikingly, L-FABP >9.8 µg/g creatinine had 100% accuracy in predicting post-PTX-related AKI. Rat kidney PTHR expression was lower in TPTX. PTH infusion (+PTH) restored tubular PTHR expression in rats that underwent TPTX. Rats with TPTX, +PTH and 5/6 NX had decreased PTHR expression compared with those without 5/6 NX. 5/6 NX partially cancelled tubular PTHR upregulation driven by +PTH. Tubular Klotho was modestly expressed in normal rat kidneys, whereas enhanced patchy tubular expression was identified in 5/6 NX rat kidneys. This Klotho and expression and localization pattern was absolutely canceled in TPTX, suggesting that PTH indirectly modulated the Klotho expression pattern. TPTX +PTH recovered tubular Klotho expression and even triggered diffusely abundant Klotho expression. 5/6 NX decreased viable tubular cells and eventually downregulated tubular Klotho expression and localization. Conclusions Preexisting tubular damage is a potential risk factor for AKI after PTX although, overall patients with hyperparathyroidism are expected to keep favorable kidney function after PTX. Patients with elevated tubular cell biomarker levels may suffer post-PTX kidney impairment even though calcium supplement is meticulously adjusted after PTX. Our unique experimental rat model suggests that blunted tubular PTH/PTHR signaling may damage tubular cell viability and deteriorate kidney function through a Klotho-linked pathway.

Publisher

Oxford University Press (OUP)

Subject

Transplantation,Nephrology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3