How to Choose Target Facilities in a Region to Implement Carbapenem-resistant Enterobacteriaceae Control Measures

Author:

Lee Bruce Y1,Bartsch Sarah M1,Hayden Mary K2,Welling Joel3,Mueller Leslie E1,Brown Shawn T3,Doshi Kruti4,Leonard Jim3,Kemble Sarah K25,Weinstein Robert A24,Trick William E24,Lin Michael Y2

Affiliation:

1. Public Health Informatics, Computational, and Operations Research, City University of New York, New York City, New York, USA

2. Rush University Medical Center, Chicago, Illinois, USA

3. Public Health Applications, Pittsburgh Super Computing Center, Pittsburgh, Pennsylvania, USA

4. Cook County Health, Chicago, Illinois, USA

5. Chicago Department of Public Health, Chicago, Illinois, USA

Abstract

Abstract Background When trying to control regional spread of antibiotic-resistant pathogens such as carbapenem-resistant Enterobacteriaceae (CRE), decision makers must choose the highest-yield facilities to target for interventions. The question is, with limited resources, how best to choose these facilities. Methods Using our Regional Healthcare Ecosystem Analyst–generated agent-based model of all Chicago metropolitan area inpatient facilities, we simulated the spread of CRE and different ways of choosing facilities to apply a prevention bundle (screening, chlorhexidine gluconate bathing, hand hygiene, geographic separation, and patient registry) to a resource-limited 1686 inpatient beds. Results Randomly selecting facilities did not impact prevalence, but averted 620 new carriers and 175 infections, saving $6.3 million in total costs compared to no intervention. Selecting facilities by type (eg, long-term acute care hospitals) yielded a 16.1% relative prevalence decrease, preventing 1960 cases and 558 infections, saving $62.4 million more than random selection. Choosing the largest facilities was better than random selection, but not better than by type. Selecting by considering connections to other facilities (ie, highest volume of discharge patients) yielded a 9.5% relative prevalence decrease, preventing 1580 cases and 470 infections, and saving $51.6 million more than random selection. Selecting facilities using a combination of these metrics yielded the greatest reduction (19.0% relative prevalence decrease, preventing 1840 cases and 554 infections, saving $59.6 million compared with random selection). Conclusions While choosing target facilities based on single metrics (eg, most inpatient beds, most connections to other facilities) achieved better control than randomly choosing facilities, more effective targeting occurred when considering how these and other factors (eg, patient length of stay, care for higher-risk patients) interacted as a system.

Funder

Safety and Healthcare Epidemiology Prevention Research Development

Agency for Healthcare Research and Quality

Eunice Kennedy Shriver National Institute of Child Health and Human Development

Global Obesity Prevention Center

National Institute of Child Health and Human Development

Office of Behavioral and Social Sciences Research

Epicenter Grant Cooperative Agreement

Publisher

Oxford University Press (OUP)

Subject

Infectious Diseases,Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3