Connected through the force: mechanical signals in plant development

Author:

Landrein Benoit1ORCID,Ingram Gwyneth1ORCID

Affiliation:

1. Laboratoire Reproduction et Développement des Plantes, Université de Lyon, Ecole Normale Supérieure de Lyon, UCB Lyon 1, CNRS, INRA, Lyon Cedex, France

Abstract

Abstract As multicellular organisms, plants acquire characteristic shapes through a complex set of biological processes known as morphogenesis. Biochemical signalling underlies much of development, as it allows cells to acquire specific identities based on their position within tissues and organs. However, as growing physical structures, plants, and their constituent cells, also experience internal and external physical forces that can be perceived and can influence key processes such as growth, polarity, and gene expression. This process, which adds another layer of control to growth and development, has important implications for plant morphogenesis. This review provides an overview of recent research into the role of mechanical signals in plant development and aims to show how mechanical signalling can be used, in concert with biochemical signals, as a cue allowing cells and tissues to coordinate their behaviour and to add robustness to developmental processes.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3