Affiliation:
1. Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, UK
Abstract
Abstract
Nitric oxide (NO), more benign than its more reactive and damaging related molecules, reactive oxygen species (ROS), is perfectly suited for duties as a redox signalling molecule. A key route for NO bioactivity is through S-nitrosation, the addition of an NO moiety to a protein Cys thiol (-SH). This redox-based, post-translational modification (PTM) can modify protein function analogous to more well established PTMs such as phosphorylation, for example by modulating enzyme activity, localization, or protein–protein interactions. At the heart of the underpinning chemistry associated with this PTM is sulfur. The emerging evidence suggests that S-nitrosation is integral to a myriad of plant biological processes embedded in both development and environmental relations. However, a role for S-nitrosation is perhaps most well established in plant–pathogen interactions.
Publisher
Oxford University Press (OUP)
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献