ISOLATION, GENETIC MAPPING AND SOME CHARACTERIZATION OF A MUTATION IN ESCHERICHIA COLI THAT AFFECTS THE PROCESSING OF RIBONUCLEIC ACID

Author:

Apirion David1

Affiliation:

1. Department of Microbiology and Immunology, Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, Missouri 63110

Abstract

ABSTRACT Temperature-sensitive mutants were isolated from an rnc (RNase III-) strain of Escherichia coli, and their rRNA metabolism was analyzed on 3% polyacrylamide gels. One of these mutants was unable to produce 23S and 5S rRNAs at the nonpermissive temperature. When an rnc  + allele was introduced to this strain, it remained temperature sensitive. At the nonpermissive temperature, this strain could then produce 23S rRNA but was unable to make normal levels of 5S rRNA. In matings and transduction experiments, the defect in rRNA metabolism and temperature sensitivity behaved as a syndrome caused by a single point mutation, which was mapped at min 23.5 on the E. coli chromosome. This mutation probably affects an enzyme, ribonuclease E (RNase E), which introduces a cut in the nascent rRNA transcript between the 23S and the 5S rRNA cistrons. The mutation rne is recessive with respect to temperature sensitivity and the pattern of rRNA. Revertants able to grow at 43° and with normal metabolism of rRNA were isolated; genetic analysis showed that they do not contain the original rne mutation, suggesting that they were true revertants. By combining the rne mutation with an rnc mutation, double rnc rne strains were synthesized, which behaved very similarly to the original rnc strain from which the rne mutation was isolated. Such strains have RNA metabolism that is similar to that of rnc strains at permissive temperatures, but at the nonpermissive temperature they fail to synthesize p23, m23 and 5S rRNAs. Thus, the experiments reported here, together with previous studies, suggest the existence of a new processing ribonuclease activity in Escherichia coli, which is called ribonuclease E.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3